Fernando Govantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725536/publications.pdf Version: 2024-02-01

FERNANDO COVANTES

#	Article	IF	CITATIONS
1	Transcriptional organization and regulation of the <i>Pseudomonas putida</i> flagellar system. Environmental Microbiology, 2022, 24, 137-157.	1.8	9
2	Polymer-induced microcolony compaction in early biofilms: A computer simulation study. Physical Review E, 2021, 103, 052407.	0.8	5
3	Transcriptional organization, regulation and functional analysis of flhF and fleN in Pseudomonas putida. PLoS ONE, 2019, 14, e0214166.	1.1	24
4	Serial Dilution-Based Growth Curves and Growth Curve Synchronization for High-Resolution Time Series of Bacterial Biofilm Growth. Methods in Molecular Biology, 2018, 1734, 159-169.	0.4	6
5	Computer simulation study of early bacterial biofilm development. Scientific Reports, 2018, 8, 5340.	1.6	32
6	PP4397/FlgZ provides the link between PP2258 c-di-GMP signalling and altered motility in Pseudomonas putida. Scientific Reports, 2018, 8, 12205.	1.6	15
7	The stringent response promotes biofilm dispersal in Pseudomonas putida. Scientific Reports, 2017, 7, 18055.	1.6	51
8	A <i>Pseudomonas putida cbrB</i> transposon insertion mutant displays a biofilm hyperproducing phenotype that is resistant to dispersal. Environmental Microbiology Reports, 2016, 8, 622-629.	1.0	6
9	Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 2016, 31, 63-69.	2.3	11
10	Biofilm formation-defective mutants in <i>Pseudomonas putida</i> . FEMS Microbiology Letters, 2016, 363, fnw127.	0.7	20
11	Mechanism of Antiactivation at the Pseudomonas sp. Strain ADP σ ^N -Dependent P <i>atzT</i> Promoter. Applied and Environmental Microbiology, 2016, 82, 4350-4362.	1.4	4
12	Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida. PLoS ONE, 2016, 11, e0163142.	1.1	40
13	The <scp>câ€diâ€GMP</scp> phosphodiesterase <scp>BifA</scp> regulates biofilm development in <scp><i>P</i></scp> <i>seudomonas putida</i> . Environmental Microbiology Reports, 2015, 7, 78-84.	1.0	46
14	Genetic evidence of a high-affinity cyanuric acid transport system inPseudomonassp. ADP. FEMS Microbiology Letters, 2014, 352, 150-156.	0.7	3
15	An <scp>A</scp> â€tract at the <scp>AtzR</scp> binding site assists <scp>DNA</scp> binding, inducerâ€dependent repositioning and transcriptional activation of the <scp>P<i>atzDEF</i></scp> promoter. Molecular Microbiology, 2013, 90, 72-87.	1.2	15
16	New methods for the isolation and characterization of biofilmâ€persistent mutants in <i><scp>P</scp>seudomonas putida</i> . Environmental Microbiology Reports, 2013, 5, 679-685.	1.0	28
17	Transcriptional Organization and Regulatory Elements of a Pseudomonas sp. Strain ADP Operon Encoding a LysR-Type Regulator and a Putative Solute Transport System. Journal of Bacteriology, 2012, 194, 6560-6573.	1.0	16
18	Regulation of the atrazine-degradative genes in Pseudomonas sp. strain ADP. FEMS Microbiology Letters, 2010, 310, 1-8.	0.7	42

Fernando Govantes

#	Article	IF	CITATIONS
19	Complex interplay between the LysRâ€ŧype regulator AtzR and its binding site mediates <i>atzDEF</i> activation in response to two distinct signals. Molecular Microbiology, 2010, 76, 331-347.	1.2	22
20	Lack of CbrB in <i>Pseudomonas putida</i> affects not only amino acids metabolism but also different stress responses and biofilm development. Environmental Microbiology, 2010, 12, 1748-1761.	1.8	46
21	Atrazine biodegradation in the lab and in the field: enzymatic activities and gene regulation. Microbial Biotechnology, 2009, 2, 178-185.	2.0	64
22	Activation and repression of a σ ^N â€dependent promoter naturally lacking upstream activation sequences. Molecular Microbiology, 2009, 73, 419-433.	1.2	20
23	Distinct roles for NtrC and GlnK in nitrogen regulation of the <i>Pseudomonas</i> sp. strain ADP cyanuric acid utilization operon. FEMS Microbiology Letters, 2009, 300, 222-229.	0.7	17
24	REGULATION OF THE ATRAZINE DEGRADATIVE PATHWAY IN Pseudomonas. , 2007, , 31-39.		0
25	The LysRâ€ŧype regulator AtzR binding site: DNA sequences involved in activation, repression and cyanuric acidâ€dependent repositioning. Molecular Microbiology, 2007, 66, 410-427.	1.2	66
26	Regulation of the Pseudomonas sp. Strain ADP Cyanuric Acid Degradation Operon. Journal of Bacteriology, 2005, 187, 155-167.	1.0	72
27	Nitrogen Control of Atrazine Utilization in Pseudomonas sp. StrainADP. Applied and Environmental Microbiology, 2003, 69, 6987-6993.	1.4	69
28	Interplay between three global regulatory proteins mediates oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon. Molecular Microbiology, 2002, 38, 1061-1073.	1.2	63
29	Oxygen regulation of the Escherichia coli cytochrome d oxidase (cydAB) operon: roles of multiple promoters and the Fnr-1 and Fnr-2 binding sites. Molecular Microbiology, 2000, 37, 1456-1469.	1.2	55
30	Coordinate Intracellular Expression of <i>Salmonella</i> Genes Induced during Infection. Journal of Bacteriology, 1999, 181, 799-807.	1.0	115
31	Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. EMBO Journal, 1998, 17, 2368-2377.	3.5	47
32	Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae. Journal of Bacteriology, 1996, 178, 6817-6823.	1.0	56
33	Transcription termination within the regulatorynifLA operon ofKlebsiella pneumoniae. Molecular Genetics and Genomics, 1996, 250, 447-454.	2.4	0
34	Transcription termination within the regulatory. Molecular Genetics and Genomics, 1996, 250, 447.	2.4	5
35	Glutamate Dehydrogenases: Enzymology, Physiological Role and Biotechnological Relevance. , 0, , .		12