
Karin Schwarzenberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entrance effects in a radial Hele-Shaw cell: Numerical and experimental study. Chemical Engineering Journal, 2022, 428, 131146.	6.6	7
2	Magnetic Separation of Rare-Earth Ions: Property Database and Kelvin Force Distribution. Journal of Physical Chemistry C, 2022, 126, 2226-2233.	1.5	3
3	Effects of gravity modulation on the dynamics of a radial <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si31.svg"><mml:mrow><mml:mi>A</mml:mi><mml:mo linebreak="badbreak">+<mml:mi>B</mml:mi><mml:mo>â†'</mml:mo><mml:mi>C</mml:mi><td>1.9 11:mrow > <!--</td--><td>6 mml:math></td></td></mml:mo </mml:mrow></mmi:math 	1.9 11:mrow > </td <td>6 mml:math></td>	6 mml:math>
4	Protein enrichment by foam Fractionation: Experiment and modeling. Chemical Engineering Science, 2022, 256, 117715.	1.9	17
5	Magnetically Induced Aggregation of Iron Oxide Nanoparticles for Carrier Flotation Strategies. ACS Applied Materials & Interfaces, 2021, 13, 20830-20844.	4.0	19
6	Interfacial flow of a surfactant-laden interface under asymmetric shear flow. Journal of Colloid and Interface Science, 2021, 599, 837-848.	5.0	6
7	Interfacial Behavior of Particle-Laden Bubbles under Asymmetric Shear Flow. Langmuir, 2021, 37, 13244-13254.	1.6	7
8	The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength?. Physical Chemistry Chemical Physics, 2020, 22, 2238-2248.	1.3	37
9	Formation of Structured Membranes by Coacervation of Xanthan Gum with C <i>_n</i> TAB Surfactants. Langmuir, 2019, 35, 13624-13635.	1.6	4
10	Influence of microscopic precipitate structures on macroscopic pattern formation in reactive flows in a confined geometry. Physical Chemistry Chemical Physics, 2019, 21, 2910-2918.	1.3	13
11	Dancing performance of organic droplets in aqueous surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 141-147.	2.3	16
12	Bio-compatible flotation of Chlorella vulgaris: Study of zeta potential and flotation efficiency. Algal Research, 2019, 44, 101705.	2.4	27
13	Adaptive Micromixer Based on the Solutocapillary Marangoni Effect in a Continuous-Flow Microreactor. Micromachines, 2018, 9, 600.	1.4	18
14	Information transmission by Marangoni-driven relaxation oscillations at droplets. Soft Matter, 2018, 14, 9250-9262.	1.2	3
15	Complex Patterns and Elementary Structures of Solutal Marangoni Convection: Experimental and Numerical Studies. Advances in Mathematical Fluid Mechanics, 2017, , 445-488.	0.1	0
16	Meniscus Asymmetry and Chemoâ€Marangoni Convection in Capillaries. Chemical Engineering and Technology, 2017, 40, 2067-2074.	0.9	3
17	The influence of interface curvature on solutal Marangoni convection in the Hele-Shaw cell. International Journal of Heat and Mass Transfer, 2017, 115, 1064-1073.	2.5	9
18	The eruptive regime of mass-transfer-driven Rayleigh–Marangoni convection. Journal of Fluid Mechanics, 2016, 791, .	1.4	5

KARIN SCHWARZENBERGER

#	Article	IF	CITATIONS
19	Self-Pinning on a Liquid Surface. Journal of Physical Chemistry Letters, 2016, 7, 520-524.	2.1	5
20	Relaxation oscillations of solutal Marangoni convection at curved interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 481, 633-643.	2.3	24
21	Solutal Marangoni convection in a Hele–Shaw geometry: Impact of orientation and gap width. European Physical Journal: Special Topics, 2015, 224, 261-276.	1.2	12
22	Pattern formation and mass transfer under stationary solutal Marangoni instability. Advances in Colloid and Interface Science, 2014, 206, 344-371.	7.0	53
23	On the transition from cellular to wavelike patterns during solutal Marangoni convection. European Physical Journal: Special Topics, 2013, 219, 121-130.	1.2	10
24	Multiscale structures in solutal Marangoni convection: Three-dimensional simulations and supporting experiments. Physics of Fluids, 2013, 25, .	1.6	26
25	Characterization of Pyrogenic Powders with Conventional Particle Sizing Technique: I. Prediction of Measured Size Distributions. Particle and Particle Systems Characterization, 2012, 29, 104-115.	1.2	19
26	Relaxation oscillations between Marangoni cells and double diffusive fingers in a reactive liquid–liquid system. Chemical Engineering Science, 2012, 68, 530-540.	1.9	19
27	Calculation of double layer interaction between colloidal aggregates. Advanced Powder Technology, 2012, 23, 139-147.	2.0	20
28	van-der-Waals interaction between two fractal aggregates. Advanced Powder Technology, 2011, 22, 220-225.	2.0	25