Mark C Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725353/publications.pdf

Version: 2024-02-01

204 papers

11,954 citations

57 h-index

24978

98 g-index

218 all docs

218 docs citations

218 times ranked

11100 citing authors

#	Article	IF	Citations
1	The Genome of the African Trypanosome Trypanosoma brucei. Science, 2005, 309, 416-422.	6.0	1,496
2	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	13.5	399
3	Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature Reviews Microbiology, 2017, 15, 217-231.	13.6	315
4	High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature, 2012, 482, 232-236.	13.7	276
5	Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. Journal of Cell Science, 2007, 120, 2977-2985.	1.2	245
6	Evolution of the Multivesicular Body ESCRT Machinery; Retention Across the Eukaryotic Lineage. Traffic, 2008, 9, 1698-1716.	1.3	243
7	The trypanosome flagellar pocket. Nature Reviews Microbiology, 2009, 7, 775-786.	13.6	230
8	RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2003, 128, 115-118.	0.5	216
9	Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO Journal, 2003, 22, 4991-5002.	3 . 5	204
10	Evidence for a Shared Nuclear Pore Complex Architecture That Is Conserved from the Last Common Eukaryotic Ancestor. Molecular and Cellular Proteomics, 2009, 8, 2119-2130.	2.5	200
11	Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evolutionary Biology, 2007, 7, 29.	3.2	186
12	Molecular paleontology and complexity in the last eukaryotic common ancestor. Critical Reviews in Biochemistry and Molecular Biology, 2013, 48, 373-396.	2.3	170
13	Acylation-dependent Protein Export inLeishmania. Journal of Biological Chemistry, 2000, 275, 11017-11025.	1.6	146
14	Evolution of modular intraflagellar transport from a coatomer-like progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6943-6948.	3.3	144
15	Sculpting the endomembrane system in deep time: High resolution phylogenetics of Rab GTPases. Journal of Cell Science, 2012, 125, 2500-8.	1.2	139
16	Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3416-3421.	3.3	137
17	Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism. Current Biology, 2016, 26, 161-172.	1.8	137
18	Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 588-593.	3.3	120

#	Article	IF	CITATIONS
19	Endocytosis of a Glycosylphosphatidylinositol-anchored Protein via Clathrin-coated Vesicles, Sorting by Default in Endosomes, and Exocytosis via RAB11-positive Carriers. Molecular Biology of the Cell, 2003, 14, 2029-2040.	0.9	115
20	A Conserved Coatomer-related Complex Containing Sec13 and Seh1 Dynamically Associates With the Vacuole in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2011, 10, M110.006478.	2.5	115
21	First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Current Opinion in Cell Biology, 2009, 21, 4-13.	2.6	112
22	Essential Roles for GPI-anchored Proteins in African Trypanosomes Revealed Using Mutants Deficient in GPI8. Molecular Biology of the Cell, 2003, 14, 1182-1194.	0.9	108
23	Evolutionary cell biology: Two origins, one objective. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16990-16994.	3.3	108
24	Subunit connectivity, assembly determinants and architecture of the yeast exocyst complex. Nature Structural and Molecular Biology, 2016, 23, 59-66.	3.6	108
25	NUP-1 Is a Large Coiled-Coil Nucleoskeletal Protein in Trypanosomes with Lamin-Like Functions. PLoS Biology, 2012, 10, e1001287.	2.6	105
26	Evolutionary reconstruction of the retromer complex and its function in <i>Trypanosoma brucei</i> Journal of Cell Science, 2011, 124, 1496-1509.	1.2	102
27	The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annual Review of Biochemistry, 2017, 86, 637-657.	5.0	101
28	Transcriptome, proteome and draft genome of Euglena gracilis. BMC Biology, 2019, 17, 11.	1.7	98
29	Developmental and morphological regulation of clathrin-mediated endocytosis in <i>Trypanosoma brucei</i> . Journal of Cell Science, 2001, 114, 2605-2615.	1.2	98
30	The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics, 2008, 9, 298.	1.2	96
31	A Cell-surface Phylome for African Trypanosomes. PLoS Neglected Tropical Diseases, 2013, 7, e2121.	1.3	96
32	Reconstructing the Evolution of the Endocytic System: Insights from Genomics and Molecular Cell Biology. Advances in Experimental Medicine and Biology, 2007, 607, 84-96.	0.8	94
33	Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal, 2003, 374, 443-451.	1.7	93
34	Interactome Mapping Reveals the Evolutionary History of the Nuclear Pore Complex. PLoS Biology, 2016, 14, e1002365.	2.6	90
35	Clinical and veterinary trypanocidal benzoxaboroles target CPSF3. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9616-9621.	3.3	90
36	GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Letters, 2001, 491, 148-153.	1.3	89

#	Article	IF	CITATIONS
37	A developmentally regulated Rab11 homologue in <i>Trypanosoma brucei</i> is involved in recycling processes. Journal of Cell Science, 2001, 114, 2617-2626.	1.2	89
38	On a bender—BARs, ESCRTs, COPs, and finally getting your coat. Journal of Cell Biology, 2011, 193, 963-972.	2.3	88
39	Differential Endocytic Functions of Trypanosoma brucei Rab5 Isoforms Reveal a Glycosylphosphatidylinositol-specific Endosomal Pathway. Journal of Biological Chemistry, 2002, 277, 9529-9539.	1.6	83
40	Complexity of Trypanosomatid Endocytosis Pathways Revealed by Rab4 and Rab5 Isoforms in Trypanosoma brucei. Journal of Biological Chemistry, 1998, 273, 32102-32110.	1.6	77
41	Chromosome-Wide Analysis of Gene Function by RNA Interference in the African Trypanosome. Eukaryotic Cell, 2006, 5, 1539-1549.	3.4	77
42	Rab protein evolution and the history of the eukaryotic endomembrane system. Cellular and Molecular Life Sciences, 2010, 67, 3449-3465.	2.4	77
43	The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. Journal of Cell Science, 2016, 129, 3695-3703.	1.2	77
44	Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Molecular and Biochemical Parasitology, 1993, 58, 97-105.	0.5	76
45	The Single Dynamin-like Protein of Trypanosoma brucei Regulates Mitochondrial Division and Is Not Required for Endocytosis. Journal of Biological Chemistry, 2004, 279, 10692-10701.	1.6	74
46	Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Scientific Reports, 2016, 6, 23704.	1.6	74
47	The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends in Parasitology, 2002, 18, 491-496.	1.5	73
48	Evolution of specificity in the eukaryotic endomembrane system. International Journal of Biochemistry and Cell Biology, 2009, 41, 330-340.	1.2	73
49	Monoallelic expression and epigenetic inheritance sustained by a Trypanosoma brucei variant surface glycoprotein exclusion complex. Nature Communications, 2019, 10, 3023.	5.8	73
50	RAB-Like 2 Has an Essential Role in Male Fertility, Sperm Intra-Flagellar Transport, and Tail Assembly. PLoS Genetics, 2012, 8, e1002969.	1.5	72
51	Tandem Duplication of rab Genes Followed by Sequence Divergence and Acquisition of Distinct Functions in Trypanosoma brucei. Journal of Biological Chemistry, 1997, 272, 10498-10505.	1.6	67
52	Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked Rab protein from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2000, 106, 21-35.	0.5	66
53	The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genetics, 2014, 10, e1004007.	1.5	66
54	Life and times: synthesis, trafficking, and evolution of VSG. Trends in Parasitology, 2014, 30, 251-258.	1.5	65

#	Article	IF	Citations
55	Metabolic quirks and the colourful history of the <i>Euglena gracilis</i> secondary plastid. New Phytologist, 2020, 225, 1578-1592.	3.5	65
56	Isolation and Characterization of Subnuclear Compartments from Trypanosoma brucei. Journal of Biological Chemistry, 2001, 276, 38261-38271.	1.6	64
57	The endocytic apparatus of the kinetoplastida. Part II: machinery and components of the system. Trends in Parasitology, 2002, 18, 540-546.	1.5	64
58	Evolution of the Karyopherin- \hat{l}^2 Family of Nucleocytoplasmic Transport Factors; Ancient Origins and Continued Specialization. PLoS ONE, 2011, 6, e19308.	1.1	64
59	Intracellular Membrane Transport Systems in Trypanosoma brucei. Traffic, 2004, 5, 905-913.	1.3	62
60	ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome. Human Molecular Genetics, 2005, 14, 2559-2569.	1.4	61
61	TbVps34, the Trypanosome Orthologue of Vps34, Is Required for Golgi Complex Segregation. Journal of Biological Chemistry, 2006, 281, 27600-27612.	1.6	61
62	A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Molecular and Biochemical Parasitology, 2005, 141, 89-97.	0.5	60
63	Missing Pieces of an Ancient Puzzle: Evolution of the Eukaryotic Membrane-Trafficking System. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016048-a016048.	2.3	60
64	The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion, 2014, 19, 338-349.	1.6	59
65	High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis. PLoS Pathogens, 2011, 7, e1002072.	2.1	58
66	Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Molecular Biology of the Cell, 2013, 24, 1574-1583.	0.9	57
67	Pyrimidine Salvage in <i>Trypanosoma brucei</i> Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidines. Molecular Pharmacology, 2013, 83, 439-453.	1.0	57
68	Ancient Eukaryotic Origin and Evolutionary Plasticity of Nuclear Lamina. Genome Biology and Evolution, 2016, 8, 2663-2671.	1.1	57
69	Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Molecular and Biochemical Parasitology, 2005, 143, 226-235.	0.5	55
70	Developmental Variation in Rab11-Dependent Trafficking in Trypanosoma brucei. Eukaryotic Cell, 2005, 4, 971-980.	3.4	55
71	Ubiquitylation is Required for Degradation of Transmembrane Surface Proteins in Trypanosomes. Traffic, 2008, 9, 1681-1697.	1.3	55
72	Antigenic variation in A frican trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cellular Microbiology, 2013, 15, 1984-1993.	1.1	55

#	Article	IF	CITATIONS
73	Both of the Rab5 subfamily small GTPases of Trypanosoma brucei are essential and required for endocytosis. Molecular and Biochemical Parasitology, 2004, 138, 67-77.	0.5	53
74	Activation of Endocytosis as an Adaptation to the Mammalian Host by Trypanosomes. Eukaryotic Cell, 2007, 6, 2029-2037.	3.4	53
75	Implications of the new eukaryotic systematics for parasitologists. Parasitology International, 2008, 57, 97-104.	0.6	51
76	Evolution of the nucleus. Current Opinion in Cell Biology, 2014, 28, 8-15.	2.6	49
77	Intracellular Trafficking in the Trypanosomatids. Traffic, 2007, 8, 629-639.	1.3	48
78	Ubiquitylation and Developmental Regulation of Invariant Surface Protein Expression in Trypanosomes. Eukaryotic Cell, 2011, 10, 916-931.	3.4	48
79	New Approaches to the Microscopic Imaging of Trypanosoma brucei. Microscopy and Microanalysis, 2004, 10, 621-636.	0.2	47
80	Evolutionary origins and specialisation of membrane transport. Current Opinion in Cell Biology, 2018, 53, 70-76.	2.6	47
81	Architecture of a Host–Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics. Molecular and Cellular Proteomics, 2015, 14, 1911-1926.	2.5	45
82	Differential Localization of the Two T. brucei Poly(A) Binding Proteins to the Nucleus and RNP Granules Suggests Binding to Distinct mRNA Pools. PLoS ONE, 2013, 8, e54004.	1.1	45
83	The Mechanism of Oxidative Stress Stabilization of the Thromboxane Receptor in COS-7 Cells. Journal of Biological Chemistry, 2004, 279, 8316-8324.	1.6	44
84	Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in African trypanosomatids. Molecular Phylogenetics and Evolution, 2013, 67, 123-128.	1.2	44
85	Cytoplasmic Targeting Signals in Transmembrane Invariant Surface Glycoproteins of Trypanosomes. Journal of Biological Chemistry, 2004, 279, 54887-54895.	1.6	43
86	Receptor-mediated endocytosis for drug delivery in African trypanosomes: fulfilling Paul Ehrlich's vision of chemotherapy. Trends in Parasitology, 2013, 29, 207-212.	1.5	40
87	Enriching the Pore: Splendid Complexity fromÂHumble Origins. Traffic, 2014, 15, 141-156.	1.3	40
88	Characterisation of protein isoprenylation in procyclic form Trypanosoma brucei. Molecular and Biochemical Parasitology, 1996, 82, 67-80.	0.5	39
89	A draft genome for the African crocodilian trypanosome Trypanosoma grayi. Scientific Data, 2014, 1, 140024.	2.4	39
90	The Single ENTHâ€Domain Protein of Trypanosomes; Endocytic Functions and Evolutionary Relationship with Epsin. Traffic, 2009, 10, 894-911.	1.3	38

#	Article	IF	Citations
91	Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. Journal of Cell Science, 2011, 124, 3771-3783.	1.2	38
92	Proteomic Analysis of Clathrin Interactions in Trypanosomes Reveals Dynamic Evolution of Endocytosis. Traffic, 2013, 14, 440-457.	1.3	37
93	Pore timing: the evolutionary origins of the nucleus and nuclear pore complex. F1000Research, 2019, 8, 369.	0.8	37
94	Chaperone Requirements for Biosynthesis of the Trypanosome Variant Surface Glycoprotein. PLoS ONE, 2010, 5, e8468.	1.1	36
95	Rab4 Is an Essential Regulator of Lysosomal Trafficking in Trypanosomes. Journal of Biological Chemistry, 2004, 279, 45047-45056.	1.6	35
96	TbRAB1 and TbRAB2 mediate trafficking through the early secretory pathway of Trypanosoma brucei. Molecular and Biochemical Parasitology, 2004, 137, 253-265.	0.5	35
97	An Evolutionarily Conserved Coiled-Coil Protein Implicated in Polycystic Kidney Disease Is Involved in Basal Body Duplication and Flagellar Biogenesis in Trypanosoma brucei. Molecular and Cellular Biology, 2005, 25, 3774-3783.	1.1	35
98	Euglena gracilis Genome and Transcriptome: Organelles, Nuclear Genome Assembly Strategies and Initial Features. Advances in Experimental Medicine and Biology, 2017, 979, 125-140.	0.8	35
99	Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends in Parasitology, 2005, 21, 447-450.	1.5	34
100	The Cell Biology of the Endocytic System from an Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016998-a016998.	2.3	34
101	Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathogens, 2015, 11, e1005236.	2.1	34
102	Dileucine signal-dependent and AP-1-independent targeting of a lysosomal glycoprotein in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2007, 156, 175-190.	0.5	33
103	Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2018, 12, e0006450.	1.3	33
104	Evolving Differentiation in African Trypanosomes. Trends in Parasitology, 2021, 37, 296-303.	1.5	33
105	Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. Journal of Biological Chemistry, 2020, 295, 8331-8347.	1.6	32
106	High-Efficiency Isolation of Nuclear Envelope Protein Complexes from Trypanosomes. Methods in Molecular Biology, 2016, 1411, 67-80.	0.4	31
107	An automated graphics tool for comparative genomics: the Coulson plot generator. BMC Bioinformatics, 2013, 14, 141.	1.2	30
108	Evidence for a non-LDL-mediated entry route for the trypanocidal drug suramin in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2002, 122, 217-221.	0.5	29

#	Article	IF	Citations
109	Specializations in a successful parasite: What makes the bloodstream-form African trypanosome so deadly?. Molecular and Biochemical Parasitology, 2011, 179, 51-58.	0.5	29
110	Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. International Review of Cell and Molecular Biology, 2009, 278, 1-67.	1.6	28
111	Exploiting the Achilles' heel of membrane trafficking in trypanosomes. Current Opinion in Microbiology, 2016, 34, 97-103.	2.3	28
112	Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends in Parasitology, 2021, 37, 100-116.	1.5	28
113	The farnesyltransferase inhibitor manumycin A is a novel trypanocide with a complex mode of action including major effects on mitochondria. Molecular and Biochemical Parasitology, 1999, 104, 67-80.	0.5	27
114	Leishmania RAB7: characterisation of terminal endocytic stages in an intracellular parasite. Molecular and Biochemical Parasitology, 2002, 123, 105-113.	0.5	27
115	The <code><i>Plasmodium</i></code> falciparum <code></code> Artemisinin Susceptibility-Associated AP-2 Adaptin \hat{l}^4 Subunit is Clathrin Independent and Essential for Schizont Maturation. MBio, 2020, 11, .	1.8	27
116	The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathogens, 2017, 13, e1006063.	2.1	27
117	TbRAB18, a developmentally regulated Golgi GTPase from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2002, 121, 63-74.	0.5	26
118	Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Reviews in Molecular Medicine, 2012, 14, e13.	1.6	26
119	Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity. Molecular Biology of the Cell, 2014, 25, 1421-1436.	0.9	26
120	Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA. PLoS Neglected Tropical Diseases, 2018, 12, e0006679.	1.3	26
121	Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathogens, 2018, 14, e1006850.	2.1	26
122	Proteasome and thiol involvement in quality control of glycosylphosphatidylinositol anchor addition. Biochemical Journal, 1998, 332, 111-118.	1.7	25
123	Sequence divergence in a family of variant surface glycoprotein genes from trypanosomes: Coding region hypervariability and downstream recombinogenic repeats. Journal of Molecular Evolution, 1996, 42, 500-511.	0.8	24
124	ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis. Journal of Cell Science, 2015, 128, 2130-2142.	1.2	24
125	Resolving the homologyâ€"function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology. Molecular and Biochemical Parasitology, 2016, 209, 88-103.	0.5	24
126	A homologue of the nuclear GTPase Ran/TC4 from Trypanosoma brucei. Molecular and Biochemical Parasitology, 1995, 69, 131-134.	0.5	23

#	Article	IF	CITATIONS
127	Co-dependence between trypanosome nuclear lamina components in nuclear stability and control of gene expression. Nucleic Acids Research, 2016, 44, 10554-10570.	6.5	23
128	Evolution of the endomembrane systems of trypanosomatids: conservation and specialisation. Journal of Cell Science, 2017, 130, 1421-1434.	1.2	23
129	Dramatic reorganisation of Trichomonas endomembranes during amoebal transformation: A possible role for G-proteinsâ ⁺ . Molecular and Biochemical Parasitology, 2006, 148, 99-102.	0.5	22
130	Evidence for Recycling of Invariant Surface Transmembrane Domain Proteins in African Trypanosomes. Eukaryotic Cell, 2013, 12, 330-342.	3.4	22
131	A Uniquely Complex Mitochondrial Proteome from Euglena gracilis. Molecular Biology and Evolution, 2020, 37, 2173-2191.	3.5	22
132	High-Yield Isolation and Subcellular Proteomic Characterization of Nuclear and Subnuclear Structures from Trypanosomes. Methods in Molecular Biology, 2008, 463, 77-92.	0.4	21
133	A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathogens, 2017, 13, e1006310.	2.1	21
134	Trypanosoma brucei: TbRAB4 regulates membrane recycling and expression of surface proteins in procyclic forms. Experimental Parasitology, 2005, 111, 160-171.	0.5	20
135	Telomeres, tethers and trypanosomes. Nucleus, 2012, 3, 478-486.	0.6	20
136	Conservation and divergence within the clathrin interactome of Trypanosoma cruzi. Scientific Reports, 2016, 6, 31212.	1.6	20
137	Terminal galactosylation of glycoconjugates in Plasmodium falciparum asexual blood stages and Trypanosoma brucei bloodstream trypomastigotes. Experimental Parasitology, 2012, 130, 314-320.	0.5	19
138	Quantitative sequencing confirms VSG diversity as central to immune evasion by Trypanosoma brucei. Trends in Parasitology, 2015, 31, 346-349.	1.5	19
139	Quality control of glycosylphosphatidylinositol anchor attachment in mammalian cells: a biochemical study. Biochemical Journal, 1997, 321, 655-664.	1.7	17
140	The Ancient Small GTPase Rab21 Functions in Intermediate Endocytic Steps in Trypanosomes. Eukaryotic Cell, 2014, 13, 304-319.	3.4	17
141	A comparative analysis of trypanosomatid SNARE proteins. Parasitology International, 2014, 63, 341-348.	0.6	17
142	Lineage-specific proteins essential for endocytosis in trypanosomes. Journal of Cell Science, 2017, 130, 1379-1392.	1.2	16
143	Comparative interactomics provides evidence for functional specialization of the nuclear pore complex. Nucleus, 2017, 8, 340-352.	0.6	16
144	Diversification of CORVET tethers facilitates transport complexity in <i>Tetrahymena thermophila</i> Journal of Cell Science, 2020, 133, .	1.2	16

#	Article	IF	CITATIONS
145	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs. PLoS Pathogens, 2020, 16, e1008932.	2.1	16
146	Leishmania major: clathrin and adaptin complexes of an intra-cellular parasite. Experimental Parasitology, 2005, 109, 33-37.	0.5	15
147	SUMOylated SNF2PH promotes variant surface glycoprotein expression in bloodstream trypanosomes. EMBO Reports, 2019, 20, e48029.	2.0	15
148	Rab23 is a flagellar protein in Trypanosoma brucei. BMC Research Notes, 2011, 4, 190.	0.6	14
149	Rab11 Function in Trypanosoma brucei: Identification of Conserved and Novel Interaction Partners. Eukaryotic Cell, 2011, 10, 1082-1094.	3.4	14
150	The distinctive flagellar proteome of <i>Euglena gracilis</i> illuminates the complexities of protistan flagella adaptation. New Phytologist, 2021, 232, 1323-1336.	3.5	14
151	Characterization of a glycosylphosphatidylinositol membrane protein anchor precursor in Leishmania mexicana. Molecular and Biochemical Parasitology, 1991, 48, 227-229.	0.5	13
152	How complex is GTPase signaling in trypanosomes?. Trends in Parasitology, 2008, 24, 253-257.	1.5	13
153	Trypanosoma brucei: Trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. Experimental Parasitology, 2010, 125, 208-221.	0.5	13
154	Localization of serum resistance-associated protein in <i>Trypanosoma brucei rhodesiense</i> and transgenic <i>Trypanosoma brucei brucei</i> . Cellular Microbiology, 2015, 17, 1523-1535.	1.1	13
155	An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. Microbial Cell, 2014, 1, 325-345.	1.4	13
156	Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic, 2018, 19, 546-563.	1.3	12
157	Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in <i>Trypanosoma brucei</i> FASEB BioAdvances, 2019, 1, 595-608.	1.3	12
158	Evidence that low endocytic activity is not directly responsible for human serum resistance in the insect form of African trypanosomes. BMC Research Notes, 2010, 3, 63.	0.6	11
159	Proteomics on the rims: insights into the biology of the nuclear envelope and flagellar pocket of trypanosomes. Parasitology, 2012, 139, 1158-1167.	0.7	11
160	Evolution and diversification of the nuclear pore complex. Biochemical Society Transactions, 2021, 49, 1601-1619.	1.6	11
161	Specialising the parasite nucleus: Pores, lamins, chromatin, and diversity. PLoS Pathogens, 2017, 13, e1006170.	2.1	11
162	Leptomonas seymouri, Trypanosoma brucei: A Method for Isolating Trypanosomatid Nuclear Factors Which BindT. bruceiSingle-Stranded g-Rich Telomere Sequence. Experimental Parasitology, 1996, 83, 155-158.	0.5	10

#	Article	IF	CITATIONS
163	The Trypanosome Rab-Related Proteins RabX1 and RabX2 Play No Role in IntraCellular Trafficking but May Be Involved in Fly Infectivity. PLoS ONE, 2009, 4, e7217.	1.1	10
164	Development of a High-Throughput Screening Assay to Identify Inhibitors of the Major M17-Leucyl Aminopeptidase from Trypanosoma cruzi Using RapidFire Mass Spectrometry. SLAS Discovery, 2020, 25, 1064-1071.	1.4	10
165	TbRAB23; a nuclear-associated Rab protein from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2004, 136, 297-301.	0.5	9
166	A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes. PLoS ONE, 2011, 6, e26890.	1.1	9
167	Instability of aquaglyceroporin (AQP) 2 contributes to drug resistance in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2020, 14, e0008458.	1.3	9
168	Regulation of Thromboxane Receptor Signaling at Multiple Levels by Oxidative Stress-Induced Stabilization, Relocation and Enhanced Responsiveness. PLoS ONE, 2010, 5, e12798.	1.1	9
169	Export of a misprocessed GPI-anchored protein from the endoplasmic reticulum in vitro in an ATP- and cytosol-dependent manner. FEBS Letters, 2000, 483, 32-36.	1.3	8
170	Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic, 2018, 19, 803-812.	1.3	8
171	Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes, 2018, 9, 368.	1.0	8
172	A Microsomal GTPase Is Required for Glycopeptide Export from the Mammalian Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 33222-33230.	1.6	7
173	Phosphoinositides, kinases and adaptors coordinating endocytosis in Trypanosoma brucei. Communicative and Integrative Biology, 2015, 8, e1082691.	0.6	7
174	CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes. Molecular and Biochemical Parasitology, 2022, 249, 111476.	0.5	7
175	African trypanosome strategies for conquering new hosts and territories: the end of monophyly?. Trends in Parasitology, 2022, 38, 724-736.	1.5	7
176	Trypanosoma brucei brucei: Endocytic recycling is important for mouse infectivity. Experimental Parasitology, 2011, 127, 777-783.	0.5	6
177	Touching from a distance. Nucleus, 2014, 5, 304-310.	0.6	6
178	Evolution and diversification of the nuclear envelope. Nucleus, 2021, 12, 21-41.	0.6	6
179	Sorting the Muck from the Brass: Analysis of Protein Complexes and Cell Lysates. Methods in Molecular Biology, 2020, 2116, 645-653.	0.4	6
180	Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex. Wellcome Open Research, 2019, 4, 112.	0.9	6

#	Article	IF	Citations
181	Proteomics Uncovers Novel Components of an Interactive Protein Network Supporting RNA Export in Trypanosomes. Molecular and Cellular Proteomics, 2022, 21, 100208.	2.5	6
182	A novel membrane complex is required for docking and regulated exocytosis of lysosome-related organelles in Tetrahymena thermophila. PLoS Genetics, 2022, 18, e1010194.	1.5	6
183	Analysis of Small GTPase Function in Trypanosomes. Methods in Enzymology, 2008, 438, 57-76.	0.4	5
184	Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Molecular Biology of the Cell, 2018, 29, 1100-1110.	0.9	5
185	<scp>EIF2α</scp> phosphorylation is regulated in intracellular amastigotes for the generation of infective <i>Trypanosoma cruzi</i> trypomastigote forms. Cellular Microbiology, 2020, 22, e13243.	1.1	5
186	Evolution, function and roles in drug sensitivity of trypanosome aquaglyceroporins. Parasitology, 2021, 148, 1137-1142.	0.7	5
187	A hub-and-spoke nuclear lamina architecture in trypanosomes. Journal of Cell Science, 2021, 134, .	1.2	4
188	The role of alternative splicing and C-terminal amino acids in thromboxane receptor stabilization. Biochemical and Biophysical Research Communications, 2005, 329, 898-904.	1.0	3
189	The kinetochore and the origin of eukaryotic chromosome segregation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12596-12598.	3.3	3
190	Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expression and Purification, 2021, 183, 105877.	0.6	3
191	Evolution of late steps in exocytosis: conservation, specialization. Wellcome Open Research, 2019, 4, 112.	0.9	3
192	Perturbation of local endogenous expression by insertion of Pol I expression constructs into the genome of Trypanosoma brucei. Experimental Parasitology, 2005, 109, 198-200.	0.5	2
193	Drug screening by crossing membranes: a novel approach to identification of trypanocides. Biochemical Journal, 2009, 419, e1-e3.	1.7	2
194	TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes. Experimental Parasitology, 2013, 133, 255-264.	0.5	2
195	Cell density-dependent ectopic expression in bloodstream form Trypanosoma brucei. Experimental Parasitology, 2013, 134, 249-255.	0.5	2
196	Making the pathogen: Evolution and adaptation in parasitic protists. Molecular and Biochemical Parasitology, 2016, 209, 1-2.	0.5	1
197	Reconstitution of glycopeptide export in mixed detergent-solubilised and resealed microsomes depleted of lumenal components. Journal of Proteomics, 2005, 62, 1-12.	2.4	0
198	Automated Phylogenetic Analysis Using Best Reciprocal BLAST. Methods in Molecular Biology, 2021, 2369, 41-63.	0.4	0

#	Article	IF	CITATIONS
199	Kinetoplastid cell biology and genetics, from the 2020 British Society for Parasitology Trypanosomiasis and Leishmaniasis symposium, Granada, Spain. Parasitology, 2021, 148, 1-19.	0.7	O
200	Cell Biology for Immune Evasion: Organizing Antigenic Variation, Surfaces, Trafficking, and Cellular Structures in Trypanosoma brucei., 2014, , 1-39.		0
201	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs., 2020, 16, e1008932.		O
202	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs., 2020, 16, e1008932.		0
203	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs., 2020, 16, e1008932.		O
204	Veterinary trypanocidal benzoxaboroles are peptidase-activated prodrugs., 2020, 16, e1008932.		0