
Veronique Fremeaux-Bacchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complement-Binding Anti-HLA Antibodies and Kidney-Allograft Survival. New England Journal of Medicine, 2013, 369, 1215-1226.	13.9	746
2	Genetics and Outcome of Atypical Hemolytic Uremic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 554-562.	2.2	567
3	Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney International, 2012, 82, 454-464.	2.6	454
4	An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatric Nephrology, 2016, 31, 15-39.	0.9	445
5	Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nature Genetics, 2013, 45, 531-536.	9.4	419
6	Haemolytic uraemic syndrome. Lancet, The, 2017, 390, 681-696.	6.3	397
7	Pregnancy-Associated Hemolytic Uremic Syndrome Revisited in the Era of Complement Gene Mutations. Journal of the American Society of Nephrology: JASN, 2010, 21, 859-867.	3.0	383
8	Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype. Journal of the American Society of Nephrology: JASN, 2013, 24, 475-486.	3.0	308
9	Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet, The, 2010, 376, 794-801.	6.3	298
10	Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. Journal of Medical Genetics, 2006, 44, 193-199.	1.5	259
11	Clinical Features of Anti-Factor H Autoantibody–Associated Hemolytic Uremic Syndrome. Journal of the American Society of Nephrology: JASN, 2010, 21, 2180-2187.	3.0	247
12	Mutations in Complement Regulatory Proteins Predispose to Preeclampsia: A Genetic Analysis of the PROMISSE Cohort. PLoS Medicine, 2011, 8, e1001013.	3.9	240
13	Atypical aHUS: State of the art. Molecular Immunology, 2015, 67, 31-42.	1.0	236
14	C3 glomerulopathy — understanding a rare complement-driven renal disease. Nature Reviews Nephrology, 2019, 15, 129-143.	4.1	223
15	Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome. Kidney International, 2010, 77, 339-349.	2.6	163
16	Pathogenic Variants in Complement Genes and Risk of Atypical Hemolytic Uremic Syndrome Relapse after Eculizumab Discontinuation. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 50-59.	2.2	148
17	Hemolytic Uremic Syndrome in Pregnancy and Postpartum. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1237-1247.	2.2	146
18	The Clinical Spectrum and Therapeutic Management of Hypocomplementemic Urticarial Vasculitis: Data From a French Nationwide Study of Fifty‧even Patients. Arthritis and Rheumatology, 2015, 67, 527-534.	2.9	136

#	Article	IF	CITATIONS
19	Statistical Validation of Rare Complement Variants Provides Insights into the Molecular Basis of Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. Journal of Immunology, 2018, 200, 2464-2478.	0.4	130
20	Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: A proof-of-concept study. EClinicalMedicine, 2020, 28, 100590.	3.2	129
21	A prevalent C3 mutation in aHUS patients causes a direct C3 convertase gain of function. Blood, 2012, 119, 4182-4191.	0.6	128
22	Complement gene variants determine the risk of immunoglobulin-associated MPGN and C3 glomerulopathy and predict long-term renal outcome. Molecular Immunology, 2016, 71, 131-142.	1.0	126
23	Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype andÂoutcome. Kidney International, 2018, 94, 408-418.	2.6	117
24	Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood, 2015, 125, 2359-2369.	0.6	112
25	C5 nephritic factors drive the biological phenotype of C3 glomerulopathies. Kidney International, 2017, 92, 1232-1241.	2.6	93
26	Eculizumab discontinuation in children and adults with atypical hemolytic-uremic syndrome: a prospective multicenter study. Blood, 2021, 137, 2438-2449.	0.6	87
27	Management of thrombotic microangiopathy in pregnancy and postpartum: report from an international working group. Blood, 2020, 136, 2103-2117.	0.6	82
28	The role of complement in C3 glomerulopathy. Molecular Immunology, 2015, 67, 21-30.	1.0	78
29	Invasive Pneumococcal Disease in Children Can Reveal a Primary Immunodeficiency. Clinical Infectious Diseases, 2014, 59, 244-251.	2.9	75
30	Insights From the Use in Clinical Practice of Eculizumab in Adult Patients With Atypical Hemolytic Uremic Syndrome Affecting the Native Kidneys: An Analysis of 19 Cases. American Journal of Kidney Diseases, 2014, 63, 40-48.	2.1	74
31	Atypical and secondary hemolytic uremic syndromes have a distinct presentation andÂnoÂcommon genetic risk factors. Kidney International, 2019, 95, 1443-1452.	2.6	74
32	Atypical haemolytic uraemic syndrome and pregnancy: outcome with ongoing eculizumab. Nephrology Dialysis Transplantation, 2016, 31, 2122-2130.	0.4	72
33	Thrombotic microangiopathy in aHUS and beyond: clinical clues from complement genetics. Nature Reviews Nephrology, 2021, 17, 543-553.	4.1	64
34	The interaction between factor H and VWF increases factor H cofactor activity and regulates VWF prothrombotic status. Blood, 2014, 123, 121-125.	0.6	63
35	Phenotypic Expansion of DGKE-Associated Diseases. Journal of the American Society of Nephrology: JASN, 2014, 25, 1408-1414.	3.0	59
36	Fatal thrombotic microangiopathy case following adeno-associated viral <i>SMN</i> gene therapy. Blood Advances, 2022, 6, 4266-4270.	2.5	59

#	Article	IF	CITATIONS
37	Complement C5 inhibition in patients with COVID-19 - a promising target?. Haematologica, 2020, 105, 2847-2850.	1.7	53
38	The Phenotypic Spectrum of Nephropathies Associated with Mutations in Diacylglycerol Kinase ε. Journal of the American Society of Nephrology: JASN, 2017, 28, 3066-3075.	3.0	50
39	Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis. Kidney International, 2021, 99, 581-597.	2.6	48
40	Structural Basis for Properdin Oligomerization and Convertase Stimulation in the Human Complement System. Frontiers in Immunology, 2019, 10, 2007.	2.2	47
41	Atypical HUS relapse triggered by COVID-19. Kidney International, 2021, 99, 267-268.	2.6	46
42	C4 Nephritic Factors in C3 Glomerulopathy: A Case Series. American Journal of Kidney Diseases, 2017, 70, 834-843.	2.1	45
43	Functional Characterization of Autoantibodies against Complement Component C3 in Patients with Lupus Nephritis. Journal of Biological Chemistry, 2015, 290, 25343-25355.	1.6	44
44	Both Monoclonal and Polyclonal Immunoglobulin Contingents Mediate Complement Activation in Monoclonal Gammopathy Associated-C3 Glomerulopathy. Frontiers in Immunology, 2018, 9, 2260.	2.2	42
45	Impact of hypertensive emergency and rare complement variants on the presentation and outcome of atypical hemolytic uremic syndrome. Haematologica, 2019, 104, 2501-2511.	1.7	40
46	A Familial C3GN Secondary to Defective C3 Regulation by Complement Receptor 1 and Complement Factor H. Journal of the American Society of Nephrology: JASN, 2016, 27, 1665-1677.	3.0	39
47	Thrombotic microangiopathy associated with gemcitabine use: Presentation and outcome in a national French retrospective cohort. British Journal of Clinical Pharmacology, 2019, 85, 403-412.	1.1	39
48	Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1. Frontiers in Immunology, 2018, 9, 3008.	2.2	36
49	Strains Responsible for Invasive Meningococcal Disease in Patients With Terminal Complement Pathway Deficiencies. Journal of Infectious Diseases, 2017, 215, 1331-1338.	1.9	35
50	Clinical and Genetic Spectrum of a Large Cohort With Total and Sub-total Complement Deficiencies. Frontiers in Immunology, 2019, 10, 1936.	2.2	34
51	Inherited Kidney Complement Diseases. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 942-956.	2.2	34
52	Complement Gene Variants and Shiga Toxin–Producing Escherichia coli–Associated Hemolytic Uremic Syndrome. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 364-377.	2.2	33
53	Eculizumab and drug-induced haemolytic-uraemic syndrome. CKJ: Clinical Kidney Journal, 2013, 6, 484-485.	1.4	31
54	Post-partum atypical haemolytic-uraemic syndrome treated with eculizumab: terminal complement activity assessment in clinical practice. CKJ: Clinical Kidney Journal, 2013, 6, 243-244.	1.4	30

#	Article	IF	CITATIONS
55	C3 glomerulopathy and eculizumab: a report on four paediatric cases. Pediatric Nephrology, 2017, 32, 1023-1028.	0.9	29
56	Severe COVID-19 is associated with hyperactivation of the alternative complement pathway. Journal of Allergy and Clinical Immunology, 2022, 149, 550-556.e2.	1.5	25
57	Eculizumab in gemcitabine-induced thrombotic microangiopathy: experience of the French thrombotic microangiopathies reference centre. BMC Nephrology, 2021, 22, 267.	0.8	24
58	Anti-C5 antibody treatment for delayed hemolytic transfusion reactions in sickle cell disease. Haematologica, 2020, 105, 2694-2697.	1.7	23
59	Autoantibodies Against C3b—Functional Consequences and Disease Relevance. Frontiers in Immunology, 2019, 10, 64.	2.2	22
60	Midterm Outcomes of 12 Renal Transplant Recipients Treated With Eculizumab to Prevent Atypical Hemolytic Syndrome Recurrence. Transplantation, 2017, 101, 2924-2930.	0.5	21
61	Identification of Distinct Immunophenotypes in Critically Ill Coronavirus Disease 2019 Patients. Chest, 2021, 159, 1884-1893.	0.4	20
62	CFH gene mutation in a case of Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS). Pediatric Nephrology, 2016, 31, 157-161.	0.9	18
63	COVID-19 as a potential trigger of complement-mediated atypical HUS Blood, 2021, 138, 1777-1782.	0.6	18
64	The Rational Use of Complement Inhibitors in Kidney Diseases. Kidney International Reports, 2022, 7, 1165-1178.	0.4	16
65	Heterogeneous histologic and clinical evolution in 3 cases of dense deposit disease with long-term follow-up. Human Pathology, 2014, 45, 2326-2333.	1.1	15
66	C5b9 Deposition in Glomerular Capillaries Is Associated With Poor Kidney Allograft Survival in Antibody-Mediated Rejection. Frontiers in Immunology, 2019, 10, 235.	2.2	14
67	Anti-factor H autoantibody-associated hemolytic uremic syndrome: the earlier diagnosed and treated, the better. Kidney International, 2014, 85, 1019-1022.	2.6	12
68	Treatment of atypical uraemic syndrome in the era of eculizumab. CKJ: Clinical Kidney Journal, 2012, 5, 4-6.	1.4	8
69	Circulating FH Protects Kidneys From Tubular Injury During Systemic Hemolysis. Frontiers in Immunology, 2020, 11, 1772.	2.2	8
70	Blockade of C5 in Severe Acute Postinfectious Glomerulonephritis Associated With Anti–Factor H Autoantibody. American Journal of Kidney Diseases, 2016, 68, 944-948.	2.1	6
71	C3 glomerulonephritis in a patient treated with anti–PD-1 antibody. European Journal of Cancer, 2020, 125, 46-48.	1.3	6
72	Monitoring Complement Activation. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1682-1683.	2.2	3

#	Article	IF	CITATIONS
73	Atypical hemolytic and uremic syndrome due to C3 mutation in pancreatic islet transplantation: a case report. BMC Nephrology, 2020, 21, 405.	0.8	1
74	Recurrence of haemolytic uraemic syndrome after renal transplantation. Current Opinion in Organ Transplantation, 2007, 12, 496-502.	0.8	0
75	Thrombotic microangiopathy with mild renal involvement and profound thrombocytopenia: not all roads lead to thrombotic thrombocytopenic purpura. Journal of Nephrology, 2022, , 1.	0.9	Ο