
Sandro Recchia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4725008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts. Applied Catalysis B: Environmental, 2004, 52, 225-237.	20.2	145
2	Single-site and nanosized Fe–Co electrocatalysts for oxygen reduction: Synthesis, characterization and catalytic performance. Journal of Power Sources, 2011, 196, 2519-2529.	7.8	99
3	Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 198-205.	20.2	82
4	EXAFS Studies of Supported Rh–Sn Catalysts for Citral Hydrogenation. Journal of Catalysis, 1999, 182, 186-198.	6.2	75
5	A comparison between Cu-ZSM-5, Cu–S-1 and Cu–mesoporous-silica–alumina as catalysts for NO decomposition. Applied Catalysis B: Environmental, 1999, 20, 67-73.	20.2	75
6	Hierarchical Hematite Nanoplatelets for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 11997-12004.	8.0	65
7	Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysts. Applied Catalysis A: General, 2002, 233, 1-6.	4.3	63
8	Templated Dewetting–Alloying of NiCu Bilayers on TiO ₂ Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 5298-5305.	11.2	61
9	Outstanding Performances of Magnesia-Supported Platinum–Tin Catalysts for Citral Selective Hydrogenation. Journal of Catalysis, 1999, 184, 1-4.	6.2	60
10	Supported metals derived from organometallics. Catalysis Today, 1998, 41, 139-147.	4.4	54
11	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	11.2	46
12	Silicate dissolution boosts the CO2 concentrations in subduction fluids. Nature Communications, 2017, 8, 616.	12.8	45
13	Fast transient infrared studies in material science: development of a novel low dead-volume, high temperature DRIFTS cell. Talanta, 2005, 66, 674-682.	5.5	43
14	An operando DRIFTS–MS study on model Ce0.5Zr0.5O2 redox catalyst: A critical evaluation of DRIFTS and MS data on CO abatement reaction. Catalysis Today, 2006, 113, 81-86.	4.4	37
15	Well-formed, size-controlled ruthenium nanoparticles active and stable for acetic acid steam reforming. Applied Catalysis B: Environmental, 2016, 181, 599-611.	20.2	37
16	Dinitrogen Irreversible Adsorption on Overexchanged Cu-ZSM-5. Journal of Physical Chemistry B, 2002, 106, 13326-13332.	2.6	33
17	One-minute highly selective Cr(VI) determination at ultra-trace levels: An ICP-MS method based on the on-line trapping of Cr(III). Journal of Hazardous Materials, 2021, 412, 125280.	12.4	33
18	How to Efficiently Produce Ultrapure Acids. International Journal of Analytical Chemistry, 2019, 2019, 1-5.	1.0	32

SANDRO RECCHIA

#	Article	IF	CITATIONS
19	Supported Rh catalysts for methane partial oxidation prepared by OM-CVD of Rh(acac)(CO)2. Applied Catalysis A: General, 2008, 346, 126-133.	4.3	30
20	On the role of carbonaceous material in the reduction of Cu2+ to Cu+ in Cu-ZSM-5 catalysts. Applied Catalysis A: General, 1999, 188, 107-119.	4.3	29
21	Validation of an isotope dilution, ICP-MS method based on internal mass bias correction for the determination of trace concentrations of Hg in sediment cores. Talanta, 2008, 74, 642-647.	5.5	28
22	DRIFT study of CO chemisorption on organometallics-derived Pd/MgO catalysts: the effect of chlorine. Catalysis Letters, 1996, 39, 183-189.	2.6	27
23	Problems in the application of the three-step BCR sequential extraction to low amounts of sediments: An alternative validated route. Talanta, 2008, 76, 621-626.	5.5	27
24	Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts, 2021, 11, 1048.	3.5	27
25	A Dewettedâ€Dealloyed Nanoporous Pt Coâ€Catalyst Formed on TiO ₂ Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H ₂ Production. Chemistry - an Asian Journal, 2020, 15, 301-309.	3.3	25
26	Kinetic peculiarities of cis/trans methyl oleate formation during hydrogenation of methyl linoleate over Pd/MgO. Applied Catalysis A: General, 2005, 279, 99-107.	4.3	23
27	Design and development of a low cost, high performance UV digester prototype: Application to the determination of trace elements by stripping voltammetry. Microchemical Journal, 2010, 95, 158-163.	4.5	22
28	In-situ EXAFS investigation of non-acidic CVD-based Pt/KL catalyst under oxidation-reduction cycles. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2045.	1.7	20
29	In situ analytical investigation of redox behavior of Cu-ZSM-5 catalysts. Physical Chemistry Chemical Physics, 1999, 1, 4515-4519.	2.8	20
30	Photocatalytic reduction and scavenging of Hg(II) over templated-dewetted Au on TiO2 nanotubes. Photochemical and Photobiological Sciences, 2019, 18, 1046-1055.	2.9	20
31	Cu–ZSM-5 (Si/Al=66), Cu–Fe–S-1 (Si/Fe=66) and Cu–S-1 catalysts for NO decomposition: preparation, analytical characterization and catalytic activity. Microporous and Mesoporous Materials, 1999, 30, 165-175.	4.4	19
32	Exploiting Chemistry to Improve Performance of Screen-Printed, Bismuth Film Electrodes (SP-BiFE). Biosensors, 2016, 6, 38.	4.7	18
33	Carbonate pseudotachylytes: evidence for seismic faulting along carbonate faults. Terra Nova, 2011, 23, 187-194.	2.1	17
34	Thermalâ€Oxidative Growth of Substoichiometric WO _{3–<i>x</i>} Nanowires at Mild Conditions. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000235.	2.4	17
35	Subducted organic matter buffered by marine carbonate rules the carbon isotopic signature of arc emissions. Nature Communications, 2022, 13, .	12.8	17
36	Quantitative analysis of COH fluids synthesized at HP – HT conditions: an optimized methodology to measure volatiles in experimental capsules. Geofluids, 2016, 16, 841-855.	0.7	16

SANDRO RECCHIA

#	Article	IF	CITATIONS
37	Characterization of Pd/MgO Catalysts: Role of Organometallic Precursor–Surface Interactions. Journal of Catalysis, 2001, 198, 296-308.	6.2	15
38	On the Properties of a Novel V-Containing Saponite Catalyst for Propene Oxidative Dehydrogenation. Catalysis Letters, 2009, 131, 42-48.	2.6	14
39	Zeolite-supported metals by design: organometallic-based tin-promoted rhodium/NaY catalysts. Applied Catalysis A: General, 1999, 182, 41-51.	4.3	13
40	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	5.2	13
41	Introducing Frontal Chromatography–Inductively Coupled Plasma-Mass Spectrometry as a Fast Method for Speciation Analysis: The Case of Inorganic Arsenic. Analytical Chemistry, 2019, 91, 13810-13817.	6.5	13
42	Carbonylation reactions of Rh(PPh3)3Cl and Ru(PPh3)3Cl2 in the solid state. Inorganica Chimica Acta, 1996, 249, 79-83.	2.4	12
43	Thermochemical mass-spectrometric investigation under reducing conditions of [Pd(acac)2] adsorbed on magnesium oxide. Thermochimica Acta, 1998, 317, 157-164.	2.7	12
44	Automated chloride analysis in catalytic science: a low-cost hardware and software implementation. Fresenius' Journal of Analytical Chemistry, 2000, 367, 416-421.	1.5	10
45	Tailored supported metal nanoparticles by CVD: an easy and efficient scale-up by a rotary bed OMCVD device. Journal of Materials Chemistry, 2009, 19, 9030.	6.7	10
46	Non-invasive identification of pigments in Japanese coloured photographs. Microchemical Journal, 2020, 157, 105017.	4.5	10
47	119Sn mössbauer study and catalytic properties of magnesia-supported platinum-tin catalysts prepared by surface organometallic chemistry. Studies in Surface Science and Catalysis, 2000, 130, 3903-3908.	1.5	9
48	Coupling Diffuse Reflectance Fourier Transform Infrared Spectrometry With Gas Chromatography (DRIFT–GC): a High-performance Coupled Technique for Catalyst Characterization. Analyst, The, 1997, 122, 279-282.	3.5	8
49	Acid/Vanadium ontaining Saponite for the Conversion of Propene into Coke: Potential Flameâ€Retardant Filler for Nanocomposite Materials. Chemistry - an Asian Journal, 2012, 7, 2394-2402.	3.3	8
50	Selective organomercury determination by ICP-MS made easy. Analytica Chimica Acta, 2022, 1206, 339553.	5.4	8
51	A viscous film sample chamber for Laser Ablation Inductively Coupled Plasma – Mass Spectrometry. Talanta, 2018, 179, 100-106.	5.5	7
52	On the effect of catalyst status in the quantitative determination of platinum in Pt-Sn/MgO materials. Fresenius' Journal of Analytical Chemistry, 2001, 369, 403-406.	1.5	5
53	Differential pulse voltammetric determination of tin in the presence of noble metals. Analytical and Bioanalytical Chemistry, 2005, 383, 115-121.	3.7	5
54	Occupational Exposure to Arsenic and Cadmium in Thin-Film Solar Cell Production. Annals of Occupational Hygiene, 2015, 59, 572-85.	1.9	4

SANDRO RECCHIA

#	Article	IF	CITATIONS
55	Understanding microwave vessel contamination by chloride species. Talanta, 2016, 159, 29-33.	5.5	4
56	Catalytic Steam Reforming of Acetic Acid: Latest Advances in Catalysts Development and Mechanism Elucidation. Current Catalysis, 2018, 7, 89-98.	0.5	4
57	How to Clean and Safely Remove HF from Acid Digestion Solutions for Ultra-Trace Analysis: A Microwave-Assisted Vessel-Inside-Vessel Protocol. Methods and Protocols, 2022, 5, 30.	2.0	4
58	High-throughput spatial resolved tests over planar model catalyst libraries: A novel reactor approach. Catalysis Today, 2009, 147, S170-S175.	4.4	3
59	Unveiling the Complexity of Japanese Metallic Threads. Heritage, 2021, 4, 4017-4039.	1.9	3
60	Improving the quality of 63Cu/65Cu ratio determination by ICP-QMS through a careful evaluation of instrumental performances. Journal of Analytical Atomic Spectrometry, 2010, 25, 893.	3.0	2
61	Anodic Stripping Tin Titration: A Method for the Voltammetric Determination of Platinum at Trace Levels. Analytical Chemistry, 2014, 86, 6654-6659.	6.5	2
62	Evaluation of the Two-Dimensional Performances of Low Activity Planar Catalysts: Development and Validation of a True Scanning Reactor. ACS Combinatorial Science, 2016, 18, 15-21.	3.8	2
63	Exploiting Laser-Ablation ICP-MS for the Characterization of Salt-Derived Bismuth Films on Screen-Printed Electrodes: A Preliminary Investigation. Biosensors, 2020, 10, 119.	4.7	2
64	Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. Chemosensors, 2021, 9, 77.	3.6	2
65	The Evaluation of the Detection of Cr(VI) in Leather. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 1-13.	1.7	2
66	Intrazeolitic redox chemistry of manganese prepared from Chemical vapor desposition of Mn2(CO)10 on NaY. Studies in Surface Science and Catalysis, 1995, 98, 126-128.	1.5	1
67	Analytical chemist's approach to heterogeneous catalysis. Gas chromatographic–mass spectrometric characterization of polycyclic aromatic hydrocarbons as a fingerprint of active sites in hydrocarbons-2356.	3.5	1
68	Trace determination of Ni and Cd in standard matrixes for ISO textile leaching tests. Annali Di Chimica, 2002, 92, 485-9.	0.6	1
69	Ultra trace determination of Pt and Rh in wastewater and gullypot sediments from a low polluted area. Annali Di Chimica, 2003, 93, 181-6.	0.6	1
70	From Batch to Flow Stripping Analysis with Screen-Printed Electrodes: A Possible Way to Decentralize Trace Inorganic Analysis. Chemosensors, 2018, 6, 37.	3.6	0
71	Development of a Scanning Chemical Vapour Deposition Reactor for the realization of patterned and non-patterned depositions: a preliminary overview. Thin Solid Films, 2021, 717, 138446.	1.8	0
72	A calibration curve at 2000 meters (A.S.L.): alpine valleys as field laboratories for teaching environmental monitoring to undergraduate students. Annali Di Chimica, 2002, 92, 407-16.	0.6	0