
hawlong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimation for inner surface geometry of a two-layer-wall furnace with inner wall made of functionally graded materials. International Communications in Heat and Mass Transfer, 2018, 97, 143-150.	5.6	7
2	Young's modulus of nanoporous γ-graphyne membrane using an atomistic finite element model. Solid State Communications, 2018, 280, 1-5.	1.9	7
3	Function estimation of laser-induced heat generation in a gas-saturated powder layer heated by a short-pulsed laser. International Communications in Heat and Mass Transfer, 2017, 81, 56-63.	5.6	6
4	Effect of porosity on the mechanical properties of a nanoporous graphene membrane using the atomic-scale finite element method. Acta Mechanica, 2017, 228, 2623-2629.	2.1	17
5	An inverse problem in estimating the laser irradiance and thermal damage in laser-irradiated biological tissue with a dual-phase-lag model. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 446-456.	1.6	11
6	Vibrational Analysis of a Single-Layered Nanoporous Graphene Membrane. Nano, 2016, 11, 1650043.	1.0	4
7	Numerical analysis of dual-phase-lag heat transfer for a moving finite medium subjected to laser heat source. Applied Mathematical Modelling, 2016, 40, 4700-4711.	4.2	9
8	Thermally induced vibration of circular monolayer graphene considering quantum effects. Acta Mechanica, 2016, 227, 1067-1074.	2.1	3
9	Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory. Micron, 2016, 80, 1-5.	2.2	10
10	Nanomachining analysis of a multi-cracked atomic force microscope cantilever based on a modified couple stress theory. Modern Physics Letters B, 2015, 29, 1550186.	1.9	3
11	An inverse hyperbolic heat conduction problem in estimating pulse heat flux with a dual-phase-lag model. International Communications in Heat and Mass Transfer, 2015, 60, 1-8.	5.6	24
12	Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1525-1534.	1.6	20
13	Estimation of energy absorption rate and temperature distributions in short-pulse laser heating of metals with a dual-phase-lag model. Applied Thermal Engineering, 2014, 65, 352-360.	6.0	7
14	An inverse problem in estimating the base heat flux of an annular fin based on the hyperbolic model of heat conduction. International Communications in Heat and Mass Transfer, 2013, 44, 31-37.	5.6	19
15	Analysis of dual-phase-lag heat conduction in short-pulse laser heating of metals with a hybrid method. Applied Thermal Engineering, 2013, 52, 275-283.	6.0	26
16	Dynamic behaviour of atomic force microscopeâ€based nanomachining based on a modified couple stress theory. Micro and Nano Letters, 2013, 8, 832-835.	1.3	7
17	Sensitivity analysis of single-layer graphene resonators using atomic finite element method. Journal of Applied Physics, 2013, 114, .	2.5	14
18	Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1472-1476.	0.4	2

hawlong Lee

#	Article	IF	CITATIONS
19	Vibration analysis of viscoelastic carbon nanotubes. Micro and Nano Letters, 2012, 7, 1308-1312.	1.3	15
20	Non-Fourier Thermoelastic Analysis of an Annular Fin with Variable Convection Heat Transfer Coefficient. International Journal of Thermophysics, 2012, 33, 1068-1081.	2.1	4
21	Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Conversion and Management, 2012, 57, 1-7.	9.2	40
22	Frequency analysis of carbon-nanotube-based mass sensor using non-local Timoshenko beam theory. Micro and Nano Letters, 2012, 7, 86.	1.3	17
23	Transient thermal loading induced optical effects in tightly jacketed double-coated optical fibers with interlayer thermal contact resistance. Optics Communications, 2012, 285, 447-452.	2.1	1
24	Estimation of Heat Flux and Thermal Stresses in Functionally Graded Hollow Circular Cylinders. Journal of Thermal Stresses, 2011, 34, 740-755.	2.0	13
25	Dynamic Behavior of Nanoparticle Delivery in Double-Walled Carbon Nanotube. Journal of Computational and Theoretical Nanoscience, 2011, 8, 2376-2380.	0.4	0
26	Sensitivity of V-shaped atomic force microscope cantilevers based on a modified couple stress theory. Microelectronic Engineering, 2011, 88, 3214-3218.	2.4	37
27	Surface effects on axial buckling of nonuniform nanowires using non-local elasticity theory. Micro and Nano Letters, 2011, 6, 19.	1.3	23
28	Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Current Applied Physics, 2011, 11, 1384-1388.	2.4	49
29	Buckling Temperature of a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Model. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2367-2371.	0.4	12
30	Vibration analysis of scanning thermal microscope probe nanomachining using Timoshenko beam theory. Current Applied Physics, 2010, 10, 570-573.	2.4	7
31	Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory. Nanoscale Research Letters, 2010, 5, 1774-1778.	5.7	82
32	Surface and small-scale effects on vibration analysis of a nonuniform nanocantilever beam. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 466-469.	2.7	35
33	Laser-Induced Thermal Effect on Sensitivity of Scanning Near-Field Optical Microscope Probe. Japanese Journal of Applied Physics, 2010, 49, 125201.	1.5	0
34	Thermal buckling of double-walled carbon nanotubes. Journal of Applied Physics, 2009, 105, 103512.	2.5	20
35	Vibration of scanning near-field optical microscope probe withÂlaser-induced thermal effect using Timoshenko beam theory. Applied Physics B: Lasers and Optics, 2009, 97, 653-659.	2.2	2
36	Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 529-532.	2.7	114

hawlong Lee

#	Article	IF	CITATIONS
37	A closed-form solution for critical buckling temperature of a single-walled carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1492-1494.	2.7	57
38	Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 982-985.	2.1	80
39	Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance. Applied Mathematics and Computation, 2009, 209, 211-221.	2.2	23
40	Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory. Journal of Physics Condensed Matter, 2009, 21, 115302.	1.8	40
41	An inverse problem of estimating the Biot number in deep X-ray lithography. Applied Physics B: Lasers and Optics, 2008, 90, 155-162.	2.2	3
42	Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe. Ultramicroscopy, 2008, 108, 619-624.	1.9	35
43	Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe. Energy Conversion and Management, 2008, 49, 2117-2123.	9.2	18
44	Vibration Analysis of Scanning Near-Field Optical Microscope Probe Using the Timoshenko Beam Model. Japanese Journal of Applied Physics, 2008, 47, 3657-3660.	1.5	1
45	Flexural vibration frequency of atomic force microscope cantilevers using the Timoshenko beam model. Nanotechnology, 2007, 18, 285503.	2.6	43
46	An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy. Ultramicroscopy, 2007, 107, 656-662.	1.9	18
47	Hydrostatic pressure and thermal loading induced long-term optical effects in tightly jacketed double-coated optical fibers. Applied Physics B: Lasers and Optics, 2006, 83, 601-607.	2.2	5
48	Effect of Interactive Damping on Vibration Sensitivities of V-Shaped Atomic Force Microscope Cantilevers. Japanese Journal of Applied Physics, 2006, 45, 6017-6021.	1.5	10
49	Viscoelastic analysis of optical effects in double-coated optical fibers induced by axial strain and hydrostatic pressure. Materials Chemistry and Physics, 2005, 91, 80-87.	4.0	4
50	Flexural sensitivity of a V-shaped cantilever of an atomic force microscope. Materials Chemistry and Physics, 2005, 92, 438-442.	4.0	32
51	Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe. Ultramicroscopy, 2005, 102, 85-92.	1.9	7
52	An inverse problem in simultaneously estimating boundary moisture fluxes in a porous annular cylinder. Acta Mechanica, 2005, 179, 131-144.	2.1	3
53	Transient thermal loading induced microbending loss in carbon-coated optical fibers. Journal of Applied Physics, 2000, 88, 6987-6992.	2.5	11