
Yohann Corvis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent luminescence nanoparticles functionalized by polymers bearing phosphonic acid anchors: synthesis, characterization, and <i>in vivo</i> behaviour. Nanoscale, 2022, 14, 1386-1394.	5.6	11
2	New Preservative-Free Formulation for the Enhanced Ocular Bioavailability of Prostaglandin Analogues in Glaucoma. Pharmaceutics, 2022, 14, 453.	4.5	6
3	Thermal Analysis Tools for Physico-Chemical Characterization and Optimization of Perfluorocarbon Based Emulsions and Bubbles Formulated for Ultrasound Imaging. Colloids and Interfaces, 2022, 6, 21.	2.1	1
4	Scalemic mixtures preparation for optimized composition of ibuprofen solid dosage forms. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 91-96.	4.3	2
5	Degradation of ZnGa ₂ O ₄ :Cr ³⁺ luminescent nanoparticles in lysosomal-like medium. Nanoscale, 2020, 12, 1967-1974.	5.6	23
6	Coating Persistent Luminescence Nanoparticles With Hydrophilic Polymers for in vivo Imaging. Frontiers in Chemistry, 2020, 8, 584114.	3.6	2
7	Characterization of Unknown Solid States of the Drug Substance Quinacrine Dihydrochloride: Two Anhydrous Forms and a Tetrahydrate Revealed. Crystal Growth and Design, 2020, 20, 5261-5268.	3.0	2
8	Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Scientific Reports, 2020, 10, 18059.	3.3	21
9	Editorial: Supramolecular Nanomaterials for Engineering, Drug Delivery, and Medical Applications. Frontiers in Chemistry, 2020, 8, 626468.	3.6	6
10	Conception of nanosized hybrid liposome/poloxamer particles to thicken the interior core of liposomes and delay hydrophilic drug delivery. International Journal of Pharmaceutics, 2019, 567, 118488.	5.2	23
11	State of the Art of Pharmaceutical Solid Forms: from Crystal Property Issues to Nanocrystals Formulation. ChemMedChem, 2019, 14, 8-23.	3.2	56
12	Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Advanced Drug Delivery Reviews, 2019, 138, 3-17.	13.7	30
13	Interpretation of the global heat of melting in eutectic binary systems. Thermochimica Acta, 2018, 664, 91-99.	2.7	6
14	Novel Perfluorinated Triblock Amphiphilic Copolymers for Lipid-Shelled Microbubble Stabilization. Langmuir, 2018, 34, 9744-9753.	3.5	7
15	Crystal structure determination and thermal behavior upon melting of p -synephrine. Thermochimica Acta, 2016, 632, 18-22.	2.7	11
16	Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2584-2591.	2.6	16
17	New Melting Data of the Two Polymorphs of Prednisolone. Journal of Physical Chemistry B, 2016, 120, 10839-10843.	2.6	14
18	Kinetics of the (solid + solid) transformations for the piracetam trimorphic system: Incidence on the construction of the p – T equilibrium phase diagram. Journal of Chemical Thermodynamics, 2016, 97, 167-172.	2.0	8

YOHANN CORVIS

#	Article	IF	CITATIONS
19	New menthol polymorphs identified by flash scanning calorimetry. CrystEngComm, 2015, 17, 5357-5359.	2.6	25
20	Incidence of the melting-degradation process of vitamin C on the determination of the phase diagram with acetaminophen enhanced by high performance liquid chromatography tools. New Journal of Chemistry, 2015, 39, 1938-1942.	2.8	10
21	Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent. Pharmaceutical Research, 2015, 32, 2983-2994.	3.5	13
22	Vitreous State Characterization of Pharmaceutical Compounds Degrading upon Melting by Using Fast Scanning Calorimetry. Journal of Physical Chemistry B, 2015, 119, 6848-6851.	2.6	26
23	Influence of particle size on the melting characteristics of organic compounds. Journal of Thermal Analysis and Calorimetry, 2015, 120, 783-787.	3.6	15
24	Phase Behavior and Relative Stability of Malonamide Polymorphs. Journal of Physical Chemistry B, 2014, 118, 1925-1931.	2.6	5
25	Comprehensive determination of the solid state stability of bethanechol chloride active pharmaceutical ingredient using combined analytical tools. CrystEngComm, 2013, 15, 7970.	2.6	8
26	The role of stearic acid in ascorbic acid protection from degradation: a heterogeneous system for homogeneous thermodynamic data. New Journal of Chemistry, 2013, 37, 761.	2.8	21
27	Crystallographic and Pressure–Temperature State Diagram Approach for the Phase Behavior and Polymorphism Study of Glutaric Acid. Crystal Growth and Design, 2013, 13, 723-730.	3.0	14
28	Asphaltene adsorption mechanism under shear flow probed by in situ neutron reflectivity measurements. European Physical Journal: Special Topics, 2012, 213, 295-302.	2.6	11
29	Insights into the crystal structure, polymorphism and thermal behavior of menthol optical isomers and racemates. CrystEngComm, 2012, 14, 7055.	2.6	54
30	Excess properties of the salol/lidocaine eutectic liquid mixture: Thermodynamic and spectroscopic investigations. Fluid Phase Equilibria, 2012, 315, 107-112.	2.5	5
31	Incidence of chirality on the properties of mixtures containing an amide type anesthetic compound. Thermochimica Acta, 2012, 539, 39-43.	2.7	9
32	Determination of quinacrine dihydrochloride dihydrate stability and characterization of its degradants. Journal of Pharmaceutical Sciences, 2011, 100, 3223-3232.	3.3	15
33	Physicochemical stability of solid dispersions of enantiomeric or racemic ibuprofen in stearic acid. Journal of Pharmaceutical Sciences, 2011, 100, 5235-5243.	3.3	19
34	Thermodynamic studies of mixtures for topical anesthesia: Lidocaine–salol binary phase diagram. Thermochimica Acta, 2010, 497, 124-128.	2.7	29
35	Lidocaine/ <scp>l</scp> -Menthol Binary System: Cocrystallization versus Solid-State Immiscibility. Journal of Physical Chemistry B, 2010, 114, 5420-5426.	2.6	48
36	Asphaltene multilayer growth in porous medium probed by SANS. European Physical Journal: Special Topics, 2009, 167, 171-176.	2.6	4

YOHANN CORVIS

#	Article	IF	CITATIONS
37	Asphaltene Adsorption Mechanisms on the Local Scale Probed by Neutron Reflectivity: Transition from Monolayer to Multilayer Growth above the Flocculation Threshold. Langmuir, 2009, 25, 3991-3998.	3.5	41
38	Meloxicam and Meloxicam-β-Cyclodextrin Complex in Model Membranes: Effects on the Properties and Enzymatic Lipolysis of Phospholipid Monolayers in Relation to Anti-inflammatory Activity. Langmuir, 2009, 25, 1417-1426.	3.5	26
39	Upper-rim alternately tethered α-cyclodextrin molecular receptors: synthesis, metal complexation and interfacial behavior. New Journal of Chemistry, 2009, 33, 554-560.	2.8	14
40	Complexation of Metal Ions in Langmuir Films Formed with Two Amphiphilic Dioxadithia Crown Ethers. Journal of Physical Chemistry B, 2008, 112, 10953-10963.	2.6	8
41	Interfacial Approach to Polyaromatic Hydrocarbon Toxicity: Phosphoglyceride and Cholesterol Monolayer Response to Phenantrene, Anthracene, Pyrene, Chrysene, and Benzo[a]pyrene. Journal of Physical Chemistry B, 2008, 112, 13518-13531.	2.6	24
42	Impact of Aluminum on the Oxidation of Lipids and Enzymatic Lipolysis in Monomolecular Films at the Air/Water Interface. Langmuir, 2007, 23, 3338-3348.	3.5	17
43	Electron-Donorâ^'Acceptor Fullerene Derivative Retained on Electrodes Using SC3 Hydrophobin. Journal of Physical Chemistry C, 2007, 111, 1176-1179.	3.1	8
44	Calixarenes in a Membrane Environment:Â A Monolayer Study on the Miscibility of Threep-tert-Butylcalix[4]arene β-Lactam Derivatives with 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine. Journal of Physical Chemistry B, 2007, 111, 13231-13242.	2.6	37
45	Interactions of a Fungistatic Antibiotic, Griseofulvin, with Phospholipid Monolayers Used as Models of Biological Membranes. Langmuir, 2006, 22, 7701-7711.	3.5	43
46	Analytical Investigation of the Interactions between SC3 Hydrophobin and Lipid Layers:Â Elaborating of Nanostructured Matrixes for Immobilizing Redox Systems. Analytical Chemistry, 2006, 78, 4850-4864.	6.5	29
47	A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems. Chemistry and Physics of Lipids, 2006, 144, 127-136.	3.2	50
48	Preparing Catalytic Surfaces for Sensing Applications by Immobilizing Enzymes via Hydrophobin Layers. Analytical Chemistry, 2005, 77, 1622-1630.	6.5	67
49	Title is missing!. , 0, , .		Ο