Lei-Lei Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472463/publications.pdf

Version: 2024-02-01

687363 713466 21 816 13 21 citations h-index g-index papers 21 21 21 1629 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale, 2014, 6, 6075-6083.	5.6	110
2	The production of self-assembled Fe2O3–graphene hybrid materials by a hydrothermal process for improved Li-cycling. Electrochimica Acta, 2012, 65, 153-158.	5.2	94
3	A core–shell nanohollow-γ-Fe ₂ O ₃ @graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries. Chemical Communications, 2015, 51, 7855-7858.	4.1	76
4	Impedance Spectra of Nonhomogeneous, Multilayered Porous Composite Graphite Electrodes for Li-Ion Batteries: Experimental and Theoretical Studies. Journal of Physical Chemistry C, 2011, 115, 9210-9219.	3.1	75
5	Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Science Bulletin, 2011, 56, 3204.	1.7	59
6	Li ₂ FeSiO ₄ nanorods bonded with graphene for high performance batteries. Journal of Materials Chemistry A, 2015, 3, 9601-9608.	10.3	59
7	î ³ -Fe ₂ O ₃ Nanocrystalline Microspheres with Hybrid Behavior of Battery-Supercapacitor for Superior Lithium Storage. ACS Applied Materials & amp; Interfaces, 2015, 7, 26284-26290.	8.0	58
8	Fast Diffusion of O ₂ on Nitrogen-Doped Graphene to Enhance Oxygen Reduction and Its Application for High-Rate Zn–Air Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 7125-7130.	8.0	52
9	Synthesis and characterization of Fe@Fe2O3 core-shell nanoparticles/graphene anode material for lithium-ion batteries. Electrochimica Acta, 2014, 134, 18-27.	5.2	49
10	Potassium carbonate as film forming electrolyte additive for lithium-ion batteries. Journal of Power Sources, 2013, 222, 177-183.	7.8	47
11	Cascading Boost Effect on the Capacity of Nitrogen-Doped Graphene Sheets for Li- and Na-lon Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 26722-26729.	8.0	46
12	Facile synthesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance. Materials Letters, 2013, 113, 1-4.	2.6	28
13	Facile synthesis of Fe@Fe2O3 core-shell nanoparticles attached to carbon nanotubes and their application as high performance anode in lithium-ion batteries. Materials Letters, 2013, 107, 27-30.	2.6	18
14	Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation. Science Bulletin, 2009, 54, 2627-2632.	9.0	10
15	Electrochemical impedance spectroscopic study of the lithium storage mechanism in commercial molybdenum disulfide. Ionics, 2014, 20, 459-469.	2.4	10
16	Mesoporous and carbon hybrid structures from layered molecular precursors for Li-ion battery application: the case of \hat{l}^2 -In2S3. Chemical Communications, 2016, 52, 4788-4791.	4.1	8
17	CHISELED NICKEL HYDROXIDE NANOPLATES GROWTH ON GRAPHENE SHEETS FOR LITHIUM ION BATTERIES. Nano, 2013, 08, 1350068.	1.0	7
18	Synthesis and the comparative lithium storage properties of hematite: hollow structures vs. carbon composites. RSC Advances, 2015, 5, 21405-21414.	3.6	5

Lei-Lei Tian

#	Article	lF	CITATION
19	FACILE SYNTHESIS OF MAGNETITE/CARBON NANOTUBES NANOCOMPOSITES WITH STABLE AND RATE CAPABILITY AS ANODE MATERIALS FOR LITHIUM-ION BATTERIES. Functional Materials Letters, 2013, 06, 1350054.	1.2	2
20	Fabrication and Lithium-Storage Performances of Graphene-Wrapped Cu2+10/Cu Composites. Acta Chimica Sinica, 2013, 71, 20130908.	1.4	2
21	Improved performance of Fe-Ni-S/ \hat{I}^3 -AlOOH for catalytic hydrocracking of di(1-naphthyl)methane. International Journal of Oil, Gas and Coal Technology, 2015, 9, 230.	0.2	1