Gerardo Puopolo

List of Publications by Citations

Source: https://exaly.com/author-pdf/4724476/gerardo-puopolo-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

49 899 17 28 g-index

50 1,205 4.3 4.48 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
49	Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 3585-96	4.8	99
48	Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. <i>Journal of Applied Microbiology</i> , 2014 , 117, 1168-80	4.7	62
47	Assessing soil quality under intensive cultivation and tree orchards in Southern Italy. <i>Applied Soil Ecology</i> , 2011 , 47, 184-194	5	61
46	Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. <i>Microbiological Research</i> , 2017 , 201, 52-62	5.3	50
45	Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine. <i>Microbiological Research</i> , 2014 , 169, 633-42	5.3	42
44	The impact of the omics era on the knowledge and use of Lysobacter species to control phytopathogenic micro-organisms. <i>Journal of Applied Microbiology</i> , 2018 , 124, 15-27	4.7	40
43	Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. <i>FEMS Microbiology Ecology</i> , 2013 , 86, 505-19	4.3	34
42	Diversity in Endophyte Populations Reveals Functional and Taxonomic Diversity between Wild and Domesticated Grapevines. <i>American Journal of Enology and Viticulture</i> , 2015 , 66, 12-21	2.2	33
41	Biocontrol of cypress canker by the phenazine producer Pseudomonas chlororaphis subsp. aureofaciens strain M71. <i>Biological Control</i> , 2011 , 58, 133-138	3.8	33
40	Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives. <i>Natural Product Research</i> , 2013 , 27, 956-66	2.3	32
39	Fusarium oxysporum f.sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. <i>BMC Plant Biology</i> , 2016 , 16, 53	5.3	30
38	The Lysobacter capsici AZ78 Genome Has a Gene Pool Enabling it to Interact Successfully with Phytopathogenic Microorganisms and Environmental Factors. <i>Frontiers in Microbiology</i> , 2016 , 7, 96	5.7	25
37	Dual RNA-Seq of Lysobacter capsici AZ78 - Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses. <i>Environmental Microbiology</i> , 2017 , 19, 4113-4125	5.2	22
36	Is the mycoparasitic activity of Ampelomyces quisqualis biocontrol strains related to phylogeny and hydrolytic enzyme production?. <i>Biological Control</i> , 2012 , 63, 348-358	3.8	22
35	Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. <i>Journal of Biotechnology</i> , 2016 , 238, 56-59	3.7	21
34	Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo. <i>Microbiological Research</i> , 2017 , 199, 49-5	5€ ^{.3}	18
33	Cyclo(L-PRO-L-TYR), The Fungicide Isolated From Lysobacter Capsici AZ78: A StructureActivity Relationship Study. <i>Chemistry of Heterocyclic Compounds</i> , 2014 , 50, 290-295	1.4	17

(2016-2015)

32	Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78. <i>Journal of Biotechnology</i> , 2015 , 216, 56-64	3.7	17	
31	Proteomic investigation of response to FORL infection in tomato roots. <i>Plant Physiology and Biochemistry</i> , 2014 , 74, 42-9	5.4	16	
30	The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant-associated Lysobacter strain. <i>Microbiological Research</i> , 2020 , 234, 126424	5.3	16	
29	Selection of plant growth promoting rhizobacteria sharing suitable features to be commercially developed as biostimulant products. <i>Microbiological Research</i> , 2021 , 245, 126672	5.3	16	
28	Pea Broth Enhances the Biocontrol Efficacy of Lysobacter capsici AZ78 by Triggering Cell Motility Associated with Biogenesis of Type IV Pilus. <i>Frontiers in Microbiology</i> , 2016 , 7, 1136	5.7	15	
27	Volatile Organic Compounds From AZ78 as Potential Candidates for Biological Control of Soilborne Plant Pathogens. <i>Frontiers in Microbiology</i> , 2020 , 11, 1748	5.7	13	
26	Ecological impact of a rare sugar on grapevine phyllosphere microbial communities. <i>Microbiological Research</i> , 2020 , 232, 126387	5.3	13	
25	Leaf Treatments with a Protein-Based Resistance Inducer Partially Modify Phyllosphere Microbial Communities of Grapevine. <i>Frontiers in Plant Science</i> , 2016 , 7, 1053	6.2	13	
24	A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions. <i>Frontiers in Plant Science</i> , 2015 , 6, 715	6.2	12	
23	The Rare Sugar Tagatose Differentially Inhibits the Growth of and by Interfering With Mitochondrial Processes. <i>Frontiers in Microbiology</i> , 2020 , 11, 128	5.7	10	
22	Transcriptomic responses of a simplified soil microcosm to a plant pathogen and its biocontrol agent reveal a complex reaction to harsh habitat. <i>BMC Genomics</i> , 2016 , 17, 838	4.5	10	
21	Structural characterization of the O-chain polysaccharide from an environmentally beneficial bacterium Pseudomonas chlororaphis subsp. aureofaciens strain M71. <i>Carbohydrate Research</i> , 2011 , 346, 2705-9	2.9	10	
20	Humic Acid Enhances the Growth of Tomato Promoted by Endophytic Bacterial Strains Through the Activation of Hormone-, Growth-, and Transcription-Related Processes. <i>Frontiers in Plant Science</i> , 2020 , 11, 582267	6.2	10	
19	Key Impact of an Uncommon Plasmid on subsp. S499 Developmental Traits and Lipopeptide Production. <i>Frontiers in Microbiology</i> , 2017 , 8, 17	5.7	9	
18	Impact of temperature on the survival and the biocontrol efficacy of Lysobacter capsici AZ78 against Phytophthora infestans. <i>BioControl</i> , 2015 , 60, 681-689	2.3	9	
17	Draft Genome Sequence of Lysobacter capsici AZ78, a Bacterium Antagonistic to Plant-Pathogenic Oomycetes. <i>Genome Announcements</i> , 2014 , 2,		9	
16	Can Bacterial Endophytes Be Used as a Promising Bio-Inoculant for the Mitigation of Salinity Stress in Crop Plants?-A Global Meta-Analysis of the Last Decade (2011-2020). <i>Microorganisms</i> , 2021 , 9,	4.9	8	
15	Monitoring Lysobacter capsici AZ78 using strain specific qPCR reveals the importance of the formulation for its survival in vineyards. <i>FEMS Microbiology Letters</i> , 2016 , 363,	2.9	7	

14	Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. <i>World Journal of Microbiology and Biotechnology</i> , 2021 , 37, 99	4.4	6
13	Evidence of pAgK84 transfer from Agrobacterium rhizogenes K84 to natural pathogenic Agrobacterium spp. in an Italian peach nursery. <i>Plant Pathology</i> , 2009 , 58, 745-753	2.8	5
12	Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture. <i>Progress in Biological Control</i> , 2020 , 275-293	0.6	5
11	The Differential Growth Inhibition of spp. Caused by the Rare Sugar Tagatose Is Associated With Species-Specific Metabolic and Transcriptional Changes. <i>Frontiers in Microbiology</i> , 2021 , 12, 711545	5.7	5
10	Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of AZ78. <i>Microorganisms</i> , 2020 , 8,	4.9	4
9	Impact of spontaneous mutations on physiological traits and biocontrol activity of Pseudomonas chlororaphis M71. <i>Microbiological Research</i> , 2020 , 239, 126517	5.3	4
8	Isolation of 2,5-diketopiperazines from AZ78 with activity against. <i>Natural Product Research</i> , 2021 , 35, 4969-4977	2.3	4
7	Functional divergence of flagellar type III secretion system: A case study in a non-flagellated, predatory bacterium. <i>Computational and Structural Biotechnology Journal</i> , 2020 , 18, 3368-3376	6.8	3
6	Characterisation of the Antibiotic Profile of AZ78, an Effective Biological Control Agent of Plant Pathogenic Microorganisms. <i>Microorganisms</i> , 2021 , 9,	4.9	3
5	Ecological Role of Volatile Organic Compounds Emitted by as Interspecies and Interkingdom Signals. <i>Microorganisms</i> , 2021 , 9,	4.9	2
4	Lysobacter enzymogenes antagonizes soilborne bacteria using the type IV secretion system. <i>Environmental Microbiology</i> , 2021 , 23, 4673-4688	5.2	2
3	Evaluation of plant protection efficacy in field conditions and side effects of Lysobacter capsici AZ78, a biocontrol agent of Plasmopara viticola. <i>Biocontrol Science and Technology</i> ,1-22	1.7	2
2	Lysobacter 2020 , 313-338		O
1	The Perception of Rhizosphere Bacterial Communication Signals Leads to Transcriptome Reprogramming in AZ78, a Plant Beneficial Bacterium, Frontiers in Microbiology, 2021 , 12, 725403	5.7	O