
Shimon Efrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472437/publications.pdf Version: 2024-02-01

SHIMON FEDAT

#	Article	IF	CITATIONS
1	Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell, 2011, 9, 17-23.	11.1	563
2	In Vitro Proliferation of Cells Derived From Adult Human β-Cells Revealed By Cell-Lineage Tracing. Diabetes, 2008, 57, 1575-1583.	0.6	185
3	Epithelial-Mesenchymal Transition in Cells Expanded In Vitro from Lineage-Traced Adult Human Pancreatic Beta Cells. PLoS ONE, 2009, 4, e6417.	2.5	113
4	Correction of Hyperglycemia in Diabetic Mice Transplanted with Reversibly Immortalized Pancreatic β Cells Controlled by the tet-on Regulatory System. Cell Transplantation, 2001, 10, 645-650.	2.5	82
5	HES-1 Is Involved in Adaptation of Adult Human β-Cells to Proliferation In Vitro. Diabetes, 2008, 57, 2413-2420.	0.6	61
6	MiR-375 Promotes Redifferentiation of Adult Human \hat{I}^2 Cells Expanded In Vitro. PLoS ONE, 2015, 10, e0122108.	2.5	57
7	Redifferentiation of Expanded Human Pancreatic β-Cell-derived Cells by Inhibition of the NOTCH Pathway. Journal of Biological Chemistry, 2012, 287, 17269-17280.	3.4	56
8	Cell replacement therapy for type 1 diabetes. Trends in Molecular Medicine, 2002, 8, 334-340.	6.7	51
9	Beta-cell replacement for insulin-dependent diabetes mellitus. Advanced Drug Delivery Reviews, 2008, 60, 114-123.	13.7	50
10	Beta-Cell Dedifferentiation in Type 2 Diabetes: Concise Review. Stem Cells, 2019, 37, 1267-1272.	3.2	34
11	Redifferentiation of Adult Human Î ² Cells Expanded In Vitro by Inhibition of the WNT Pathway. PLoS ONE, 2014, 9, e112914.	2.5	30
12	TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro. PLoS ONE, 2015, 10, e0139168.	2.5	30
13	Genetically Engineered Pancreatic βâ€Cell Lines for Cell Therapy of Diabetes. Annals of the New York Academy of Sciences, 1999, 875, 286-293.	3.8	27
14	Making \hat{I}^2 cells from adult tissues. Trends in Endocrinology and Metabolism, 2012, 23, 278-285.	7.1	27
15	Regulation of Insulin Secretion: Insights from Engineered β-cell Lines. Annals of the New York Academy of Sciences, 2004, 1014, 88-96.	3.8	26
16	Ex-vivo Expansion of Adult Human Pancreatic Beta-Cells. Review of Diabetic Studies, 2008, 5, 116-122.	1.3	22
17	Redifferentiation of expanded human islet β cells by inhibition of ARX. Scientific Reports, 2016, 6, 20698.	3.3	18
18	Inhibition of ZEB1 expression induces redifferentiation of adult human β cells expanded in vitro. Scientific Reports, 2015, 5, 13024.	3.3	17

SHIMON EFRAT

#	Article	IF	CITATIONS
19	Genes induced by growth arrest in a pancreatic β cell line: identification by analysis of cDNA arrays. FEBS Letters, 1999, 457, 65-70.	2.8	16
20	Genes Associated with Pancreas Development and Function Maintain Open Chromatin in iPSCs Generated from Human Pancreatic Beta Cells. Stem Cell Reports, 2017, 9, 1395-1405.	4.8	15
21	Epigenetic Memory: Lessons From iPS Cells Derived From Human Î ² Cells. Frontiers in Endocrinology, 2020, 11, 614234.	3.5	14
22	The NOTCH Pathway in \hat{I}^2 -Cell Growth and Differentiation. Vitamins and Hormones, 2014, 95, 391-405.	1.7	13
23	β-Cell Expansion for Therapeutic Compensation of Insulin Resistance in Type 2 Diabetes. Experimental Diabesity Research, 2003, 4, 1-5.	1.0	6
24	Generation of surrogate beta cells from tissue stem cells. Current Diabetes Reports, 2004, 4, 298-303.	4.2	4
25	Recent progress in generation of human surrogate Î ² cells. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 259-264.	2.3	4
26	Generation of insulin-producing cells from stem cells for cell replacement therapy of type 1 diabetes. Israel Medical Association Journal, 2004, 6, 265-7.	0.1	4
27	Preventing Type 1 Diabetes Mellitus. Molecular Diagnosis and Therapy, 2002, 2, 129-134.	3.3	3
28	Prospects of Stem Cell Therapy in Diabetes - Introduction to the RDS Special Issue. Review of Diabetic Studies, 2010, 7, 80-81.	1.3	0