
Santiago Medina-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4724207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Advances, 2015, 5, 20639-20649.	1.7	104
2	Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics. Food Chemistry, 2017, 215, 245-255.	4.2	93
3	Micrometer and Submicrometer Particles Prepared by Precipitation Polymerization: Thermodynamic Model and Experimental Evidence of the Relation between Flory's Parameter and Particle Size. Macromolecules, 2010, 43, 5804-5813.	2.2	63
4	In Vitro Oxygen Sensing Using Intraocular Microrobots. IEEE Transactions on Biomedical Engineering, 2012, 59, 3104-3109.	2.5	48
5	Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer. Biosensors and Bioelectronics, 2016, 79, 600-607.	5.3	44
6	Comparison of different analytical classification scenarios: application for the geographical origin of edible palm oil by sterolic (NP) HPLC fingerprinting. Analytical Methods, 2015, 7, 4192-4201.	1.3	41
7	Oneâ€Step Fabrication of Multifunctional Coreâ€Shell Fibres by Coâ€Electrospinning. Advanced Functional Materials, 2011, 21, 3488-3495.	7.8	36
8	A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: A reliable tool for Mediterranean origin-labeled olive oils authentication. Food Research International, 2018, 106, 233-242.	2.9	34
9	The development of solid-surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples. Talanta, 2003, 60, 287-293.	2.9	28
10	Development of a folic acid molecularly imprinted polymer and its evaluation as a sorbent for dispersive solid-phase extraction by liquid chromatography coupled to mass spectrometry. Journal of Chromatography A, 2018, 1576, 26-33.	1.8	27
11	Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3528-3573.	5.9	27
12	Novel synthetic route for covalent coupling of biomolecules on superâ€paramagnetic hybrid nanoparticles. Journal of Polymer Science Part A, 2012, 50, 3944-3953.	2.5	26
13	A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence. Biosensors and Bioelectronics, 2016, 82, 217-223.	5.3	26
14	High performance optical oxygen sensors based on iridium complexes exhibiting interchromophore energy shuttling. Analyst, The, 2016, 141, 3090-3097.	1.7	26
15	Copper(<scp>i</scp>) complexes as alternatives to iridium(<scp>iii</scp>) complexes for highly efficient oxygen sensing. Chemical Communications, 2015, 51, 11401-11404.	2.2	24
16	In-Depth Two-Year Study of Phenolic Profile Variability among Olive Oils from Autochthonous and Mediterranean Varieties in Morocco, as Revealed by a LC-MS Chemometric Profiling Approach. International Journal of Molecular Sciences, 2017, 18, 52.	1.8	22
17	Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors. Mikrochimica Acta, 2011, 172, 299-308.	2.5	20
18	Discrimination and classification of extra virgin olive oil using a chemometric approach based on TMS-4,4′-desmetylsterols GC(FID) fingerprints of edible vegetable oils. Food Chemistry, 2019, 274, 518-525.	4.2	20

#	Article	IF	CITATIONS
19	Design and synthesis by ATRP of novel, water-insoluble, lineal copolymers and their application in the development of fluorescent and pH-sensing nanofibres made by electrospinning. Journal of Materials Chemistry, 2011, 21, 6742.	6.7	18
20	A new highly sensitive and versatile optical sensing film for controlling CO2 in gaseous and aqueous media. Sensors and Actuators B: Chemical, 2013, 184, 281-287.	4.0	18
21	High performance optical sensing nanocomposites for low and ultra-low oxygen concentrations using phase-shift measurements. Analyst, The, 2013, 138, 4607.	1.7	18
22	A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Analytica Chimica Acta, 2018, 1015, 66-73.	2.6	17
23	A first approach towards the development of geographical origin tracing models for North Moroccan olive oils based on triacylglycerols profiles. European Journal of Lipid Science and Technology, 2016, 118, 1223-1235.	1.0	14
24	Electrophoretic deposition as a new approach to produce optical sensing films adaptable to microdevices. Nanoscale, 2014, 6, 263-271.	2.8	13
25	Improved Multifrequency Phase-Modulation Method That Uses Rectangular-Wave Signals to Increase Accuracy in Luminescence Spectroscopy. Analytical Chemistry, 2014, 86, 5245-5256.	3.2	12
26	On the calibration of chemical sensors based on photoluminescence: Selecting the appropriate optimization criterion. Sensors and Actuators B: Chemical, 2015, 212, 278-286.	4.0	11
27	Evaluation of different functional groups for covalent immobilization of enzymes in the development of biosensors with oxygen optical transduction. Analytical Methods, 2015, 7, 2943-2949.	1.3	11
28	Iron-phthalocyanine complexes immobilized in nanostructured metal oxide as optical sensors of NO _{x} and CO : NMR and photophysical studies. Journal of Porphyrins and Phthalocyanines, 2009, 13, 616-623.	0.4	10
29	Method for the comparison of complex matrix assisted laser desorption ionization-time of flight mass spectra. Stability of therapeutical monoclonal antibodies. Chemometrics and Intelligent Laboratory Systems, 2017, 170, 58-67.	1.8	8
30	Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. Nanomaterials, 2020, 10, 199.	1.9	8
31	Evaluation of a simple PC-based quadrature detection method at very low SNR for luminescence spectroscopy. Sensors and Actuators B: Chemical, 2014, 192, 334-340.	4.0	7
32	Atomâ€Transfer Radical Polymerisation (ATRP) as a Tool for the Development of Optical Sensing Phases. Israel Journal of Chemistry, 2012, 52, 264-275.	1.0	6
33	Evaluation of two sterically directed attachments of biomolecules on a coaxial nanofibre membrane to improve the development of optical biosensors. Talanta, 2018, 187, 83-90.	2.9	5
34	Direct estimation of the standard error in phase-resolved luminescence measurements. Application to an oxygen measuring system. Sensors and Actuators B: Chemical, 2016, 224, 521-528.	4.0	4
35	Real-time optimal combination of multifrequency information in phase-resolved luminescence spectroscopy based on rectangular-wave signals. Sensors and Actuators B: Chemical, 2017, 238, 221-225.	4.0	4
36	Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen. Mikrochimica Acta, 2013, 180, 1201-1209.	2.5	2

#	Article	IF	CITATIONS
37	A Polynomial-Exponent Model for Calibrating the Frequency Response of Photoluminescence-Based Sensors. Sensors, 2020, 20, 4635.	2.1	2

38 Optical Sensors: Oneâ€Step Fabrication of Multifunctional Coreâ€Shell Fibres by Coâ€Electrospinning (Adv.) Tj ETQa0 0 0 rgBT /Overloc

39	Self-Referenced Multifrequency Phase-Resolved Luminescence Spectroscopy. Sensors, 2020, 20, 5482.	2.1	0	
----	---	-----	---	--