Jonathan R Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4723788/publications.pdf

Version: 2024-02-01

all docs

279798 243625 2,184 48 23 44 citations h-index g-index papers 52 52 52 3921 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Peptide-Based Vaccines: Current Progress and Future Challenges. Chemical Reviews, 2020, 120, 3210-3229.	47.7	352
2	A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host and Microbe, 2018, 24, 221-233.e5.	11.0	182
3	A Replication-Competent Vesicular Stomatitis Virus for Studies of SARS-CoV-2 Spike-Mediated Cell Entry and Its Inhibition. Cell Host and Microbe, 2020, 28, 486-496.e6.	11.0	178
4	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	28.9	173
5	Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses. Cell, 2017, 169, 878-890.e15.	28.9	145
6	A "Trojan horse―bispecific-antibody strategy for broad protection against ebolaviruses. Science, 2016, 354, 350-354.	12.6	101
7	Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. Journal of Virology, 2016, 90, 266-278.	3.4	92
8	Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature, 2018, 563, 559-563.	27.8	84
9	Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site. Cell Reports, 2016, 15, 1514-1526.	6.4	80
10	Efficacy and Safety of COVID-19 Convalescent Plasma in Hospitalized Patients. JAMA Internal Medicine, 2022, 182, 115.	5.1	63
11	Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis. ACS Omega, 2021, 6, 85-102.	3. 5	54
12	Engineered Dengue Virus Domain III Proteins Elicit Cross-Neutralizing Antibody Responses in Mice. Journal of Virology, 2018, 92, .	3.4	42
13	Designed protein mimics of the Ebola virus glycoprotein GP2 αâ€helical bundle: Stability and pH effects. Protein Science, 2011, 20, 1587-1596.	7.6	41
14	Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell, 2021, 184, 4414-4429.e19.	28.9	41
15	Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell, 2021, 184, 3486-3501.e21.	28.9	39
16	Treatment of Severe COVID-19 with Convalescent Plasma in Bronx, NYC. JCI Insight, 2021, 6, .	5.0	36
17	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
18	A Combination of Receptor-Binding Domain and N-Terminal Domain Neutralizing Antibodies Limits the Generation of SARS-CoV-2 Spike Neutralization-Escape Mutants. MBio, 2021, 12, e0247321.	4.1	35

#	Article	IF	Citations
19	Chemical and Structural Aspects of Ebola Virus Entry Inhibitors. ACS Infectious Diseases, 2015, 1, 42-52.	3.8	32
20	Bispecific Antibody Affords Complete Post-Exposure Protection of Mice from Both Ebola (Zaire) and Sudan Viruses. Scientific Reports, 2016, 6, 19193.	3.3	27
21	Two Synthetic Antibodies that Recognize and Neutralize Distinct Proteolytic Forms of the Ebola Virus Envelope Glycoprotein. ChemBioChem, 2012, 13, 2549-2557.	2.6	26
22	Structural Characterization of the Glycoprotein GP2 Core Domain from the CAS Virus, a Novel Arenavirus-Like Species. Journal of Molecular Biology, 2014, 426, 1452-1468.	4.2	25
23	Synthetic Antibodies Inhibit Bcl-2-associated X Protein (BAX) through Blockade of the N-terminal Activation Site. Journal of Biological Chemistry, 2016, 291, 89-102.	3.4	25
24	Synthetic Antibodies with a Human Framework That Protect Mice from Lethal Sudan Ebolavirus Challenge. ACS Chemical Biology, 2014, 9, 2263-2273.	3.4	23
25	Conditional Trimerization and Lytic Activity of HIV-1 gp41 Variants Containing the Membrane-Associated Segments. Biochemistry, 2015, 54, 1589-1599.	2.5	23
26	Bispecific antibodies for viral immunotherapy. Human Vaccines and Immunotherapeutics, 2017, 13, 836-842.	3.3	22
27	Comprehensive mapping of functional epitopes on dengue virus glycoprotein E DIII for binding to broadly neutralizing antibodies 4E11 and 4E5A by phage display. Virology, 2015, 485, 371-382.	2.4	18
28	Influence of a heptad repeat stutter on the pH-dependent conformational behavior of the central coiled-coil from influenza hemagglutinin HA2. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2220-2228.	2.6	17
29	Protein engineering strategies for the development of viral vaccines and immunotherapeutics. FEBS Letters, 2014, 588, 298-307.	2.8	16
30	A switch from parallel to antiparallel strand orientation in a coiled-coil X-ray structure via two core hydrophobic mutations. Biopolymers, 2015, 104, 178-185.	2.4	12
31	Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
32	Monoclonal antibodies from humans with Mycobacterium tuberculosis exposure or latent infection recognize distinct arabinomannan epitopes. Communications Biology, 2021, 4, 1181.	4.4	12
33	Single-Dilution COVID-19 Antibody Test with Qualitative and Quantitative Readouts. MSphere, 2021, 6, .	2.9	11
34	Longitudinally monitored immune biomarkers predict the timing of COVID-19 outcomes. PLoS Computational Biology, 2022, 18, e1009778.	3.2	10
35	Structural and Functional Studies on the Marburg Virus GP2 Fusion Loop. Journal of Infectious Diseases, 2015, 212, S146-S153.	4.0	7
36	Design and evaluation of bi- and trispecific antibodies targeting multiple filovirus glycoproteins. Journal of Biological Chemistry, 2018, 293, 6201-6211.	3.4	7

#	Article	IF	CITATIONS
37	A strategy for phage display selection of functional domain-exchanged immunoglobulin scaffolds with high affinity for glycan targets. Journal of Immunological Methods, 2012, 376, 150-155.	1.4	6
38	Resurfaced ZIKV EDIII nanoparticle immunogens elicit neutralizing and protective responses inÂvivo. Cell Chemical Biology, 2022, 29, 811-823.e7.	5.2	6
39	A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathogens, 2022, 18, e1010573.	4.7	6
40	Exploring Human Antimicrobial Antibody Responses on a Single B Cell Level. Vaccine Journal, 2017, 24, .	3.1	5
41	Two Distinct Lysosomal Targeting Strategies Afford Trojan Horse Antibodies With Pan-Filovirus Activity. Frontiers in Immunology, 2021, 12, 729851.	4.8	5
42	Interrogation of side chain biases for oligomannose recognition by antibody 2G12 via structure-guided phage display libraries. Bioorganic and Medicinal Chemistry, 2017, 25, 5790-5798.	3.0	3
43	Combinatorial Resurfacing of Dengue Envelope Protein Domain III Antigens Selectively Ablates Epitopes Associated with Serotype-Specific or Infection-Enhancing Antibody Responses. ACS Combinatorial Science, 2020, 22, 446-456.	3.8	3
44	Mechanistic and Fc requirements for inhibition of Sudan virus entry and in vivo protection by a synthetic antibody. Immunology Letters, 2017, 190, 289-295.	2.5	2
45	Diverse contributions of avidity to the broad neutralization of Dengue virus by antibodies targeting the E dimer epitope. Virology, 2021, 559, 57-64.	2.4	2
46	Conformational and lipid bilayer-perturbing properties of Marburg virus GP2 segments containing the fusion loop and membrane-proximal external region/transmembrane domain. Heliyon, 2019, 5, e03018.	3.2	1
47	Isolation of Synthetic Antibodies Against BCL-2-Associated X Protein (BAX). Methods in Molecular Biology, 2019, 1877, 351-357.	0.9	1
48	Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Qualitative Immunoglobulin G Assays: The Value of Numeric Reporting. Archives of Pathology and Laboratory Medicine, 2021, 145, 929-936.	2.5	1