Jean-Pierre de Villartay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained Correction of X-Linked Severe Combined Immunodeficiency by ex Vivo Gene Therapy. New England Journal of Medicine, 2002, 346, 1185-1193.	13.9	1,075
2	Artemis, a Novel DNA Double-Strand Break Repair/V(D)J Recombination Protein, Is Mutated in Human Severe Combined Immune Deficiency. Cell, 2001, 105, 177-186.	13.5	817
3	Cernunnos, a Novel Nonhomologous End-Joining Factor, Is Mutated in Human Immunodeficiency with Microcephaly. Cell, 2006, 124, 287-299.	13.5	640
4	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	6.0	366
5	Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Research, 2002, 30, 3592-3601.	6.5	288
6	Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood, 2009, 113, 4114-4124.	0.6	220
7	Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunological Reviews, 2005, 203, 98-109.	2.8	212
8	Identical mutations in RAG1 or RAG2 genes leading to defective V(D)J recombinase activity can cause either T-B–severe combined immune deficiency or Omenn syndrome. Blood, 2001, 97, 2772-2776.	0.6	190
9	Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. Journal of Clinical Investigation, 2003, 111, 381-387.	3.9	186
10	Severe combined immunodeficiency and microcephaly in siblings with hypomorphic mutations in DNA ligase IV. European Journal of Immunology, 2006, 36, 224-235.	1.6	182
11	A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. Journal of Clinical Investigation, 2005, 115, 3291-3299.	3.9	177
12	Deletion of the human T-cell receptor δ-gene by a site-specific recombination. Nature, 1988, 335, 170-174.	13.7	176
13	A Founder Mutation in Artemis, an SNM1-Like Protein, Causes SCID in Athabascan-Speaking Native Americans. Journal of Immunology, 2002, 168, 6323-6329.	0.4	162
14	JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood, 2008, 112, 1402-1412.	0.6	159
15	Restricted heterogeneity of T lymphocytes in combined immunodeficiency with hypereosinophilia (Omenn's syndrome) Journal of Clinical Investigation, 1991, 87, 1352-1359.	3.9	158
16	Severe cutaneous papillomavirus disease after haemopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common γc cytokine receptor subunit or JAK-3 deficiency. Lancet, The, 2004, 363, 2051-2054.	6.3	153
17	Human RTEL1 deficiency causes Hoyeraal–Hreidarsson syndrome with short telomeres and genome instability. Human Molecular Genetics, 2013, 22, 3239-3249.	1.4	150
18	SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood, 2014, 123, 281-289.	0.6	150

#	Article	IF	CITATIONS
19	Defect in Rearrangement of the Most 5′ TCR–Jα Following Targeted Deletion of T Early α (TEA): Implications for TCR α Locus Accessibility. Immunity, 1996, 5, 331-342.	6.6	149
20	A Human Severe Combined Immunodeficiency (SCID) Condition with Increased Sensitivity to Ionizing Radiations and Impaired V(D)J Rearrangements Defines a New DNA Recombination/Repair Deficiency. Journal of Experimental Medicine, 1998, 188, 627-634.	4.2	143
21	Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation. Journal of Clinical Investigation, 2015, 125, 4171-4185.	3.9	143
22	V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene, 2007, 26, 7780-7791.	2.6	136
23	Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. Journal of Experimental Medicine, 2007, 204, 1717-1727.	4.2	132
24	Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. Journal of Allergy and Clinical Immunology, 2013, 131, 1594-1603.e9.	1.5	127
25	Structural characterization of filaments formed by human Xrcc4–Cernunnos/XLF complex involved in nonhomologous DNA end-joining. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12663-12668.	3.3	126
26	Independent mutations of the human CD3–ε gene resulting in a T cell receptor/CD3 complex immunodeficiency. Nature Genetics, 1993, 3, 77-81.	9.4	122
27	Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection. Journal of Experimental Medicine, 2017, 214, 73-89.	4.2	122
28	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	3.9	115
29	Cernunnos Interacts with the XRCC4·DNA-ligase IV Complex and Is Homologous to the Yeast Nonhomologous End-joining Factor Nej1*. Journal of Biological Chemistry, 2006, 281, 13857-13860.	1.6	112
30	Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nature Genetics, 2017, 49, 1539-1545.	9.4	107
31	T Cell Receptor δ Gene Rearrangement and T Early α (TEA) Expression in Immature αβ LineageThymocytes: Implications for αβ/γĨ´ Lineage Commitment. Immunity, 1996, 4, 37-45.	6.6	88
32	A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Human Molecular Genetics, 2000, 9, 583-588.	1.4	85
33	PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator–dependent autoimmunity. Journal of Allergy and Clinical Immunology, 2015, 135, 1578-1588.e5.	1.5	84
34	Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature ("FILS syndromeâ€). Journal of Experimental Medicine, 2012, 209, 2323-2330.	4.2	83
35	Increased radiosensitivity of granulocyte macrophage colony-forming units and skin fibroblasts in human autosomal recessive severe combined immunodeficiency Journal of Clinical Investigation, 1993, 91, 1214-1218.	3.9	82
36	The Metallo-β-Lactamase/β-CASP Domain of Artemis Constitutes the Catalytic Core for V(D)J Recombination. Journal of Experimental Medicine, 2004, 199, 315-321.	4.2	79

JEAN-PIERRE DE VILLARTAY

#	Article	IF	CITATIONS
37	Highly restricted human T cell repertoire in peripheral blood and tissue-infiltrating lymphocytes in Omenn's syndrome Journal of Clinical Investigation, 1998, 102, 312-321.	3.9	79
38	Diagnosis of Fanconi anemia in patients with bone marrow failure. Haematologica, 2009, 94, 487-495.	1.7	77
39	Gene therapy of RAG-2â^'/â^' mice: sustained correction of the immunodeficiency. Blood, 2002, 100, 3942-3949.	0.6	76
40	Interplay between Ku, Artemis, and the DNA-dependent Protein Kinase Catalytic Subunit at DNA Ends. Journal of Biological Chemistry, 2006, 281, 27784-27793.	1.6	76
41	Function of Apollo (SNM1B) at telomere highlighted by a splice variant identified in a patient with Hoyeraal–Hreidarsson syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10097-10102.	3.3	76
42	RORγT, a thymus-specific isoform of the orphan nuclear receptor RORγ / TOR, is up-regulated by signalin through the pre-T cell receptor and binds to the TEA promoter. European Journal of Immunology, 1999, 29, 4072-4080.	ng 1.6	73
43	Long-term immune reconstitution in RAG-1-deficient mice treated by retroviral gene therapy: a balance between efficiency and toxicity. Blood, 2006, 107, 63-72.	0.6	64
44	Outcomes and Treatment Strategies for Autoimmunity and Hyperinflammation in Patients with RAG Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1970-1985.e4.	2.0	64
45	Cernunnos Deficiency Reduces Thymocyte Life Span and Alters the T Cell Repertoire in Mice and Humans. Molecular and Cellular Biology, 2013, 33, 701-711.	1.1	63
46	An inÂvivo genetic reversion highlights the crucial role of Myb-Like, SWIRM, and MPN domains 1 (MYSM1) in human hematopoiesis and lymphocyte differentiation. Journal of Allergy and Clinical Immunology, 2015, 136, 1619-1626.e5.	1.5	63
47	Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 140-150.e7.	1.5	63
48	Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling. PLoS Biology, 2014, 12, e1001820.	2.6	62
49	The mechanisms of immune diversification and their disorders. Nature Reviews Immunology, 2003, 3, 962-972.	10.6	59
50	The Repair of DNA Damages/Modifications During the Maturation of the Immune System: Lessons from Human Primary Immunodeficiency Disorders and Animal Models. Advances in Immunology, 2005, 87, 237-295.	1.1	58
51	Artemis Phosphorylated by DNA-dependent Protein Kinase Associates Preferentially with Discrete Regions of Chromatin. Journal of Molecular Biology, 2006, 358, 1200-1211.	2.0	58
52	Stable and Functional Lymphoid Reconstitution in Artemis-deficient Mice Following Lentiviral Artemis Gene Transfer Into Hematopoietic Stem Cells. Molecular Therapy, 2008, 16, 1490-1499.	3.7	58
53	V(D)J Recombination Deficiencies. Advances in Experimental Medicine and Biology, 2009, 650, 46-58.	0.8	58
54	RAG2 and XLF/Cernunnos interplay reveals a novel role for the RAG complex in DNA repair. Nature Communications, 2016, 7, 10529.	5.8	57

JEAN-PIERRE DE VILLARTAY

#	Article	IF	CITATIONS
55	Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. European Journal of Immunology, 1997, 27, 2043-2047.	1.6	51
56	Phosphorylation of Artemis following irradiation-induced DNA damage. European Journal of Immunology, 2004, 34, 3146-3155.	1.6	51
57	Lack of detectable defect in DNA double-strand break repair and DNA-dependent protein kinase activity in radiosensitive human severe combined immunodeficiency fibroblasts. European Journal of Immunology, 1996, 26, 1118-1122.	1.6	49
58	A primary immunodeficiency characterized by defective immunoglobulin class switch recombination and impaired DNA repair. Journal of Experimental Medicine, 2007, 204, 1207-1216.	4.2	47
59	Three-dimensional Clustering of Human RAG2 Gene Mutations in Severe Combined Immune Deficiency. Journal of Biological Chemistry, 2000, 275, 12672-12675.	1.6	45
60	Delineation of the Xrcc4-interacting Region in the Globular Head Domain of Cernunnos/XLF. Journal of Biological Chemistry, 2010, 285, 26475-26483.	1.6	44
61	Cernunnos influences human immunoglobulin class switch recombination and may be associated with B cell lymphomagenesis. Journal of Experimental Medicine, 2012, 209, 291-305.	4.2	44
62	Somatic genetic rescue of a germline ribosome assembly defect. Nature Communications, 2021, 12, 5044.	5.8	44
63	Functional characterization of the promoter for the human germ-line T cell receptor J α (TEA) transcript. European Journal of Immunology, 1993, 23, 1294-1298.	1.6	43
64	Requirement for XLF/Cernunnos in alignment-based gap filling by DNA polymerases λ and μ for nonhomologous end joining in human whole-cell extracts. Nucleic Acids Research, 2009, 37, 4055-4062.	6.5	43
65	Primary Microcephaly, Impaired DNA Replication, and Genomic Instability Caused by Compound Heterozygous <i>ATR</i> Mutations. Human Mutation, 2013, 34, 374-384.	1.1	43
66	PROMIDISα: AÂT-cell receptor α signature associated with immunodeficiencies caused by V(D)J recombination defects. Journal of Allergy and Clinical Immunology, 2019, 143, 325-334.e2.	1.5	43
67	Artemis sheds new light on V(D)J recombination. Immunological Reviews, 2004, 200, 142-155.	2.8	40
68	PAXX and Xlf interplay revealed by impaired CNS development and immunodeficiency of double KO mice. Cell Death and Differentiation, 2018, 25, 444-452.	5.0	40
69	Restoration of Human B-cell Differentiation Into NOD-SCID Mice Engrafted With Gene-corrected CD34+ Cells Isolated From Artemis or RAG1-deficient Patients. Molecular Therapy, 2008, 16, 396-403.	3.7	39
70	Germ-line transcription and methylation status of the TCR-Jα locus in its accessible configuration. European Journal of Immunology, 1997, 27, 1619-1625.	1.6	38
71	NHP2 deficiency impairs rRNA biogenesis and causes pulmonary fibrosis and HÃ,yeraal–Hreidarsson syndrome. Human Molecular Genetics, 2020, 29, 907-922.	1.4	38
72	Normal T cell receptor Vβ usage in a primary immunodeficiency associated with HLA class II deficiency. European Journal of Immunology, 1993, 23, 928-934.	1.6	37

#	Article	IF	CITATIONS
73	Immunologic aspects of patients with disseminated bacille Calmette-Guerin disease in north-west of Iran. Italian Journal of Pediatrics, 2009, 35, 42.	1.0	34
74	Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. Journal of Allergy and Clinical Immunology, 2012, 129, 473-482.e3.	1.5	34
75	A nonsense mutation in the DNA repair factor Hebo causes mild bone marrow failure and microcephaly. Journal of Experimental Medicine, 2016, 213, 1011-1028.	4.2	34
76	A regulatory role for the cohesin loader NIPBL in nonhomologous end joining during immunoglobulin class switch recombination. Journal of Experimental Medicine, 2013, 210, 2503-2513.	4.2	33
77	Impaired telomere integrity and rRNA biogenesis in PARNâ€deficient patients and knockâ€out models. EMBO Molecular Medicine, 2019, 11, e10201.	3.3	31
78	High level transient gene expression in human lymphoid cells by SV40 large T antigen boost. Nucleic Acids Research, 1992, 20, 245-250.	6.5	30
79	Reduced immunoglobulin class switch recombination in the absence of Artemis. Blood, 2009, 114, 3601-3609.	0.6	29
80	Impaired lymphocyte function and differentiation in CTPS1-deficient patients result from a hypomorphic homozygous mutation. JCI Insight, 2020, 5, .	2.3	29
81	CD34-positive early human thymocytes: T cell receptor and cytokine receptor gene expression. European Journal of Immunology, 1995, 25, 2471-2478.	1.6	27
82	DNA repair and the immune system: From V(D)J recombination to aging lymphocytes. European Journal of Immunology, 2007, 37, S71-S82.	1.6	27
83	Congenital defects in V(D)J recombination. British Medical Bulletin, 2015, 114, 157-167.	2.7	27
84	DNA replication stress triggers rapid DNA replication fork breakage by Artemis and XPF. PLoS Genetics, 2018, 14, e1007541.	1.5	27
85	Lack of selective VÎ ² deletion in peripheral CD4+ T cells of human immunodeficiency virus-infected infants. European Journal of Immunology, 1993, 23, 2041-2044.	1.6	26
86	The V(D)J Recombination/DNA Repair Factor Artemis Belongs to the Metalloâ€Î²â€Łactamase Family and Constitutes a Critical Developmental Checkpoint of the Lymphoid System. Annals of the New York Academy of Sciences, 2003, 987, 150-157.	1.8	26
87	Human regulator of telomere elongation helicase 1 (RTEL1) is required for the nuclear and cytoplasmic trafficking of pre-U2 RNA. Nucleic Acids Research, 2015, 43, 1834-1847.	6.5	26
88	Translesion DNA synthesis-assisted non-homologous end-joining of complex double-strand breaks prevents loss of DNA sequences in mammalian cells. Nucleic Acids Research, 2009, 37, 6737-6745.	6.5	25
89	Tissue-specific Activity of the γc Chain Gene Promoter Depends upon an Ets Binding Site and Is Regulated by GA-binding Protein. Journal of Biological Chemistry, 1996, 271, 14849-14855.	1.6	24
90	Cernunnos-XLF, a recently identified non-homologous end-joining factor required for the development of the immune system. Current Opinion in Allergy and Clinical Immunology, 2006, 6, 416-420.	1.1	24

IF

CITATIONS

91	T early alpha (TEA) regulates initial TCRVAJA rearrangements and leads to TCRJA coincidence. European Journal of Immunology, 2001, 31, 2080-2086.	1.6	23
92	Human and animal models of V(D)J recombination deficiency. Current Opinion in Immunology, 2003, 15, 592-598.	2.4	23
93	Self-tolerance to host and donor following HLA-mismatched bone marrow transplantation. European Journal of Immunology, 1986, 16, 117-122.	1.6	22
94	Activation induces apoptosis inHerpesvirus saimiri-transformed T cells independent of CD95 (Fas,) Tj ETQq0 0 (0 rgBT /Ove 1.6	rlock 10 T
95	Two SCID cases with Cernunnosâ€XLF deficiency successfully treated by hematopoietic stem cell transplantation. Pediatric Transplantation, 2012, 16, E167-71.	0.5	22
96	Atypical combined immunodeficiency due to Artemis defect: A case presenting as hyperimmunoglobulin M syndrome and with LGLL. Molecular Immunology, 2013, 56, 354-357.	1.0	21
97	Coupling DNA Damage and Repair: an Essential Safeguard during Programmed DNA Double-Strand Breaks?. Trends in Cell Biology, 2020, 30, 87-96.	3.6	20
98	The differentiation of human pro-thymocytes along the TCR- $\hat{1}\pm/\hat{1}^2$ pathway in vitro is accompanied by the site-specific deletion of the TCR- $\hat{1}'$ locus. International Immunology, 1991, 3, 1301-1305.	1.8	19
99	A histidine in the β-CASP domain of Artemis is critical for its full in vitro and in vivo functions. DNA Repair, 2009, 8, 202-208.	1.3	19
100	Expanding the SRI domain family: A common scaffold for binding the phosphorylated Câ€ŧerminal domain of RNA polymerase II. FEBS Letters, 2014, 588, 4431-4437.	1.3	19
101	Extended clinical and genetic spectrum associated with biallelic RTEL1 mutations. Blood Advances, 2016, 1, 36-46.	2.5	19
102	Impaired Replication Stress Response in Cells from Immunodeficiency Patients Carrying Cernunnos/XLF Mutations. PLoS ONE, 2009, 4, e4516.	1.1	19
103	A short peptide at the C terminus is responsible for the nuclear localization of RAG2. European Journal of Immunology, 2002, 32, 2068.	1.6	18
104	Lateâ€onset combined immune deficiency due to <scp>LIGIV</scp> mutations in a 12â€yearâ€old patient. Pediatric Allergy and Immunology, 2017, 28, 203-206.	1.1	18
105	Biosafety Studies of a Clinically Applicable Lentiviral Vector for the Gene Therapy of Artemis-SCID. Molecular Therapy - Methods and Clinical Development, 2019, 15, 232-245.	1.8	18
106	Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. Journal of Clinical Investigation, 2021, 131, .	3.9	18
107	A common Vδ2—Dδ2—Dδ3T cell receptor gene rearrangement in precursor B acute lymphoblastic leukaemia. British Journal of Haematology, 1991, 79, 44-49	1.2	17
108	Diagnosis of 22q11.2 Deletion Syndrome and Artemis Deficiency in Two Children with T-B-NK+ Immunodeficiency. Journal of Clinical Immunology, 2012, 32, 1141-1144.	2.0	17

ARTICLE

#

JEAN-PIERRE DE VILLARTAY

#	Article	IF	CITATIONS
109	V(D)J recombination and DNA repair: lessons from human immune deficiencies and other animal models. Current Opinion in Allergy and Clinical Immunology, 2002, 2, 473-479.	1.1	16
110	TEA regulates local TCR-Iα accessibility through histone acetylation. European Journal of Immunology, 2003, 33, 2216-2222.	1.6	16
111	The C-Terminal Domain of Cernunnos/XLF Is Dispensable for DNA Repair In Vivo. Molecular and Cellular Biology, 2009, 29, 1116-1122.	1.1	16
112	When natural mutants do not fit our expectations: the intriguing case of patients with <i> <scp>XRCC</scp> 4 </i> mutations revealed by wholeâ€exome sequencing. EMBO Molecular Medicine, 2015, 7, 862-864.	3.3	16
113	Mutations in XLF/NHEJ1/Cernunnos gene results in downregulation of telomerase genes expression and telomere shortening. Human Molecular Genetics, 2017, 26, 1900-1914.	1.4	16
114	Cernunnos/Xlf Deficiency Results in Suboptimal V(D)J Recombination and Impaired Lymphoid Development in Mice. Frontiers in Immunology, 2019, 10, 443.	2.2	16
115	The Expanding Spectrum of Human coronin 1A deficiency. Current Allergy and Asthma Reports, 2014, 14, 481.	2.4	15
116	Variable correction of Artemis deficiency by I-Sce1-meganuclease-assisted homologous recombination in murine hematopoietic stem cells. Gene Therapy, 2014, 21, 529-532.	2.3	14
117	Mutations of the RTEL1 Helicase in a Hoyeraal-Hreidarsson Syndrome Patient Highlight the Importance of the ARCH Domain. Human Mutation, 2016, 37, 469-472.	1.1	14
118	Inherited human Apollo deficiency causes severe bone marrow failure and developmental defects. Blood, 2022, 139, 2427-2440.	0.6	14
119	A case report of a patient with microcephaly, facial dysmorphism, chromosomal radiosensitivity and telomere length alterations closely resembling "Nijmegen breakage syndrome―phenotype. European Journal of Medical Genetics, 2007, 50, 176-187.	0.7	13
120	Distinct effects of DNA-PKcs and Artemis inactivation on signal joint formation in vivo. Molecular Immunology, 2008, 45, 3383-3391.	1.0	12
121	Tetratricopeptide repeat domain 7A is a nuclear factor that modulates transcription and chromatin structure. Cell Discovery, 2018, 4, 61.	3.1	10
122	An in vivo study of the impact of deficiency in the DNA repair proteins PAXX and XLF on development and maturation of the hemolymphoid system. Journal of Biological Chemistry, 2020, 295, 2398-2406.	1.6	8
123	CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division. PLoS ONE, 2015, 10, e0140849.	1.1	8
124	Severe combined immunodeficiency caused by a new homozygous RAG1 mutation with progressive encephalopathy. Hematology/ Oncology and Stem Cell Therapy, 2014, 7, 44-49.	0.6	7
125	<scp>DNA</scp> ligase <scp>IV</scp> deficiency: Immunoglobulin class deficiency depends on the genotype. Pediatric Allergy and Immunology, 2017, 28, 298-303.	1.1	7
126	Severe combined immune deficiency. , 2020, , 153-205.		7

Severe combined immune deficiency. , 2020, , 153-205. 126

Jean-Pierre de Villartay

#	Article	IF	CITATIONS
127	Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. Nature Communications, 2021, 12, 3933.	5.8	7
128	A Disease-Causing Single Amino Acid Deletion in the Coiled-Coil Domain of RAD50 Impairs MRE11 Complex Functions in Yeast and Humans. Cell Reports, 2020, 33, 108559.	2.9	7
129	Reduced immunoglobulin gene diversity in patients with Cornelia de Lange syndrome. Journal of Allergy and Clinical Immunology, 2018, 141, 408-411.e8.	1.5	6
130	Higher chromosome stability in embryonic neural stem and progenitor cells than in fibroblasts in response to acute or chronic genotoxic stress. DNA Repair, 2020, 88, 102801.	1.3	6
131	Clinical effects of mutations to CD95 (Fas): relevance to autoimmunity?. Seminars in Immunopathology, 1998, 19, 301-310.	4.0	5
132	Lymphopoiesis in transgenic mice over-expressing Artemis. Gene Therapy, 2016, 23, 176-186.	2.3	5
133	An XRCC4 mutant mouse, a model for human X4 syndrome, reveals interplays with Xlf, PAXX, and ATM in lymphoid development. ELife, 2021, 10, .	2.8	4
134	Primary membrane T cell immunodeficiencies. Clinical Immunology and Immunopathology, 1991, 61, S56-S60.	2.1	3
135	A novel radiosensitive SCID patient with a pronounced G2/M sensitivity. DNA Repair, 2010, 9, 365-373.	1.3	3
136	Passera ou ne passera pas—accessibility is key. Nature Immunology, 2006, 7, 1019-1021.	7.0	2
137	Reduced recruitment of 53BP1 during interstrand crosslink repair is associated with genetically inherited attenuation of mitomycin C sensitivity in a family with Fanconi anemia. Oncotarget, 2018, 9, 3779-3793.	0.8	2
138	Severe Combined Immunodeficiencies. , 2014, , 87-141.		1
139	Severe Combined Immune Deficiency with Absence of B and T Lymphocytes (T â^' B â^' NK + SCIDs): The Key Function of V(D)I Recombination for Lymphocyte Development, 2016, 369-377.		0