
Johannes H Uhl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4723099/publications.pdf Version: 2024-02-01

IOHANNES H I HI

#	Article	IF	CITATIONS
1	Assessing the accuracy of multi-temporal built-up land layers across rural-urban trajectories in the United States. Remote Sensing of Environment, 2018, 204, 898-917.	4.6	74
2	Two centuries of settlement and urban development in the United States. Science Advances, 2020, 6, eaba2937.	4.7	60
3	HISDAC-US, historical settlement data compilation for the conterminous United States over 200 years. Scientific Data, 2018, 5, 180175.	2.4	47
4	Map Archive Mining: Visual-Analytical Approaches to Explore Large Historical Map Collections. ISPRS International Journal of Geo-Information, 2018, 7, 148.	1.4	36
5	Automated Extraction of Human Settlement Patterns From Historical Topographic Map Series Using Weakly Supervised Convolutional Neural Networks. IEEE Access, 2020, 8, 6978-6996.	2.6	30
6	Using Historical Maps in Scientific Studies. Springer Briefs in Geography, 2020, , .	0.1	26
7	Spatialising uncertainty in image segmentation using weakly supervised convolutional neural networks: a case study from historical map processing. IET Image Processing, 2018, 12, 2084-2091.	1.4	20
8	Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 2020, 34, 824-849.	2.2	20
9	Fine-grained, spatiotemporal datasets measuring 200 years of land development in the United States. Earth System Science Data, 2021, 13, 119-153.	3.7	20
10	A century of decoupling size and structure of urban spaces in the United States. Communications Earth & Environment, 2021, 2, .	2.6	19
11	Automatic alignment of geographic features in contemporary vector data and historical maps. , 2017, ,		17
12	Towards the automated large-scale reconstruction of past road networks from historical maps. Computers, Environment and Urban Systems, 2022, 94, 101794.	3.3	17
13	Road network evolution in the urban and rural United States since 1900. Computers, Environment and Urban Systems, 2022, 95, 101803.	3.3	17
14	Towards a novel backdating strategy for creating built-up land time series data using contemporary spatial constraints. Remote Sensing of Environment, 2020, 238, 111197.	4.6	16
15	Framework for agricultural performance assessment based on MODIS multitemporal data. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	16
16	Exposing the urban continuum: implications and cross-comparison from an interdisciplinary perspective. International Journal of Digital Earth, 2020, 13, 22-44.	1.6	15
17	Building Linked Spatio-Temporal Data from Vectorized Historical Maps. Lecture Notes in Computer Science, 2020, , 409-426.	1.0	9
18	Combining Remote-Sensing-Derived Data and Historical Maps for Long-Term Back-Casting of Urban Extents. Remote Sensing, 2021, 13, 3672.	1.8	8

JOHANNES H UHL

#	Article	IF	CITATIONS
19	An Automatic Approach for Generating Rich, Linked Geo-Metadata from Historical Map Images. , 2020, , .		7
20	Training Deep Learning Models for Geographic Feature Recognition from Historical Maps. Springer Briefs in Geography, 2020, , 65-98.	0.1	6
21	A scale-sensitive framework for the spatially explicit accuracy assessment of binary built-up surface layers. Remote Sensing of Environment, 2022, 279, 113117.	4.6	6
22	MTBF-33: A multi-temporal building footprint dataset for 33 counties in the United States (1900 – 2015). Data in Brief, 2022, 43, 108369.	0.5	5
23	Historical Map Applications and Processing Technologies. Springer Briefs in Geography, 2020, , 9-36.	0.1	4
24	A framework for radiometric sensitivity evaluation of medium resolution remote sensing time series data to built-up land cover change. , 2017, , .		3
25	Creating Structured, Linked Geographic Data from Historical Maps: Challenges and Trends. Springer Briefs in Geography, 2020, , 37-63.	0.1	3
26	Automating Information Extraction from Large Historical Topographic Map Archives: New Opportunities and Challenges. , 2021, , 509-522.		3
27	A Label Correction Algorithm Using Prior Information for Automatic and Accurate Geospatial Object Recognition. , 2021, , .		1
28	Guided Generative Models using Weak Supervision for Detecting Object Spatial Arrangement in Overhead Images. , 2021, , .		0
29	Towards the large-scale extraction of historical land cover information from historical maps. Abstracts of the ICA, 0, 3, 1-2.	0.0	О