Zhaohui Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4723091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimal Temperature Rise Control for a Large-Scale Vertical Quench Furnace System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4912-4924.	9.3	4
2	Abnormality Monitoring in the Blast Furnace Ironmaking Process Based on Stacked Dynamic Target-Driven Denoising Autoencoders. IEEE Transactions on Industrial Informatics, 2022, 18, 1854-1863.	11.3	24
3	Influence of Charging Parameters on the Burden Flow Velocity and Distribution on the Blast Furnace Chute Based on Discrete Element Method. Steel Research International, 2022, 93, 2100332.	1.8	6
4	Polymorphic Temperature Measurement Method of Molten Iron After Skimmer in Ironmaking Process. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	4.7	2
5	Prediction of Multiple Molten Iron Quality Indices in the Blast Furnace Ironmaking Process Based on Attention-Wise Deep Transfer Network. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	4.7	5
6	Soft Sensor Modeling of Blast Furnace Wall Temperature Based on Temporal–Spatial Dimensional Finite-Element Extrapolation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-14.	4.7	9
7	Detection of Blast Furnace Stockline Based on a Spatial–Temporal Characteristic Cooperative Method. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	4.7	9
8	Compensation Method for the Influence of Dust in Optical Path on Infrared Temperature Measurement. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	12
9	Soft Sensors Based on Adaptive Stacked Polymorphic Model for Silicon Content Prediction in Ironmaking Process. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	26
10	Mass Flow Measurement of Molten Iron From Blast Furnace, Based on Trusted Region Stacking Using Single High-Speed Camera. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	4.7	4
11	Research on the Influence of Multiple Interference Factors on Infrared Temperature Measurement. IEEE Sensors Journal, 2021, 21, 10546-10555.	4.7	11
12	Polymorphic Measurement Method of FeO Content of Sinter Based on Heterogeneous Features of Infrared Thermal Images. IEEE Sensors Journal, 2021, 21, 12036-12047.	4.7	13
13	Velocity Measurement of Blast Furnace Molten Iron Based on Mixed Morphological Features of Boundary Pixel Sets. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	3
14	An Industrial Multilevel Knowledge Graph-Based Local–Global Monitoring for Plant-Wide Processes. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-15.	4.7	4
15	A Condition Prediction Method of Blast Furnace Based on Flame Morphology Information. , 2021, , .		0
16	Neurofuzzy-Based Plant-Wide Hierarchical Coordinating Optimization and Control: An Application to Zinc Hydrometallurgy Plant. IEEE Transactions on Industrial Electronics, 2020, 67, 2207-2219.	7.9	33
17	Velocity Measurement of Blast Furnace Molten Iron Based on Local Multi-Feature Correction Using Multi-Stage Filtered High-Speed Camera. IEEE Sensors Journal, 2020, 20, 11537-11548.	4.7	6
18	Compensation Method for Molten Iron Temperature Measurement Based on Heterogeneous Features of Infrared Thermal Images. IEEE Transactions on Industrial Informatics, 2020, 16, 7056-7066.	11.3	17

Zhaohui Jiang

#	Article	IF	CITATIONS
19	Classification of silicon content variation trend based on fusion of multilevel features in blast furnace ironmaking. Information Sciences, 2020, 521, 32-45.	6.9	19
20	3D Topography Measurement and Completion Method of Blast Furnace Burden Surface Using High-Temperature Industrial Endoscope. IEEE Sensors Journal, 2020, 20, 6478-6491.	4.7	18
21	A Real-Time 3D Measurement System for the Blast Furnace Burden Surface Using High-Temperature Industrial Endoscope. Sensors, 2020, 20, 869.	3.8	17
22	Influence of Dust on Temperature Measurement Using Infrared Thermal Imager. IEEE Sensors Journal, 2020, 20, 2911-2918.	4.7	8
23	A Novel 3-D High-Temperature Industrial Endoscope With Large Field Depth and Wide Field. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6530-6543.	4.7	13
24	Prediction of FeO Content in Sintering Process Based on Heat Transfer Mechanism and Data-driven Model. , 2020, , .		5
25	A two-layer optimization and control strategy for zinc hydrometallurgy process based on RBF neural network soft-sensor. , 2019, , .		1
26	Modelling of Inner Surface Temperature Field of Blast Furnace Wall Based on Inverse Heat Conduction Problems. IFAC-PapersOnLine, 2019, 52, 78-83.	0.9	2
27	Two-Stage Control of Endpoint Temperature for Pebble Stove Combustion. IEEE Access, 2019, 7, 625-640.	4.2	4
28	Material level detection of blast furnace based on the fusion of membership degree classification and sliding window Model. IFAC-PapersOnLine, 2019, 52, 48-53.	0.9	3
29	A Novel Method for Compensating Temperature Measurement Error Caused by Dust Using Infrared Thermal Imager. IEEE Sensors Journal, 2019, 19, 1730-1739.	4.7	11
30	Temperature Measurement and Compensation Method of Blast Furnace Molten Iron Based on Infrared Computer Vision. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 3576-3588.	4.7	64
31	ASFC-based DNN Modeling for Prediction of Silicon Content in Blast Furnace Ironmaking. , 2018, , .		2
32	A method for improving the accuracy of infrared thermometry under the influence of dust. IFAC-PapersOnLine, 2018, 51, 246-250.	0.9	2
33	A Light Field Imaging Based Measuring Method for Blast Furnace Burden Distribution. IFAC-PapersOnLine, 2018, 51, 257-261.	0.9	2
34	A Trend Prediction Method Based on Fusion Model and its Application. , 2018, , .		2
35	Temperature Measurement Method for Blast Furnace Molten Iron Based on Infrared Thermography and Temperature Reduction Model. Sensors, 2018, 18, 3792.	3.8	18
36	An attribute reduction method based on three-way decisions model for decision tables. , 2018, , .		0

Zhaohui Jiang

#	Article	IF	CITATIONS
37	A three-way decisions model for decision tables. , 2017, , .		1
38	A Novel Device for Optical Imaging of Blast Furnace Burden Surface: Parallel Low-Light-Loss Backlight High-Temperature Industrial Endoscope. IEEE Sensors Journal, 2016, 16, 6703-6717.	4.7	33
39	A less conservative delay-dependent stability for uncertain singular linear systems with time-delays. , 2010, , .		1
40	Study on decentralized generalized predictive control of process industry with long time-delay. , 2010, , .		0
41	Delay-dependent stabilization of singular linear time delay systems based on memory state feedback control. , 2008, , .		4
42	Delay-Dependant Decentralized H, Filtering for Uncertain Interconnected Systems. , 2007, , .		0
43	Delay-dependent Stabilization of Singular Linear Continuous-time Systems with Time-varying State and Input Delays. , 2007, , .		4
44	Decentralized robust H <inf>∞</inf> output feedback control for value bounded uncertain large-scale interconnected systems. , 2007, , .		0
45	Decentralized robust H-infinity descriptor output feedback control for value-bounded uncertain descriptor large-scale systems. Journal of Control Theory and Applications, 2006, 4, 193-200.	0.8	6
46	Decentralized Robust Delay-dependent Stabilization for Singular Large Scale Systems Based on Descriptor Output Feedback. , 2006, , .		1
47	Decentralized Robust H <inf>∞</inf> Output Feedback Control for Value Bounded Uncertain Large-scale Interconnected Systems. , 2006, , .		1
48	Research on the velocity distribution law of the coke in the chute of blast furnace based on discrete element method. Computational Particle Mechanics, 0, , .	3.0	1