Agnieszka Torzewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potentially Probiotic Lactobacillus Strains Derived from Food Intensify Crystallization Caused by Proteus mirabilis in Urine. Probiotics and Antimicrobial Proteins, 2021, 13, 441-452.	1.9	4
2	Aggregation of poorly crystalline and amorphous components of infectious urinary stones is mediated by bacterial lipopolysaccharide. Scientific Reports, 2019, 9, 17061.	1.6	10
3	Impact of bacteria on aggregation of crystalline and amorphous components of infectious urinary stones. Journal of Crystal Growth, 2019, 506, 71-78.	0.7	4
4	Influence of various uropathogens on crystallization of urine mineral components caused by Proteus mirabilis. Research in Microbiology, 2019, 170, 80-85.	1.0	8
5	Development of a molecular serotyping scheme and a multiplexed luminex-based array for Providencia. Journal of Microbiological Methods, 2018, 153, 14-23.	0.7	5
6	Solid Phases Precipitating in Artificial Urine in the Absence and Presence of Bacteria Proteus mirabilis—A Contribution to the Understanding of Infectious Urinary Stone Formation. Crystals, 2018, 8, 164.	1.0	19
7	Genetic diversity of the O antigens of Proteus species and the development of a suspension array for molecular serotyping. PLoS ONE, 2017, 12, e0183267.	1.1	24
8	Binding of CXCL8/IL-8 to <i>Mycobacterium tuberculosis</i> Modulates the Innate Immune Response. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	96
9	Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine. Acta Biochimica Polonica, 2015, 62, 127-132.	0.3	14
10	Aggregation of Struvite, Carbonate Apatite, and <i>Proteus mirabilis</i> as a Key Factor of Infectious Urinary Stone Formation. Crystal Growth and Design, 2015, 15, 1446-1451.	1.4	26
11	Effect of Size and Shape of Nanosilver Particles on Struvite and Carbonate Apatite Precipitation. Crystal Growth and Design, 2015, 15, 3307-3320.	1.4	7
12	<i>In vitro</i> studies on the role of glycosaminoglycans in crystallization intensity during infectious urinary stones formation. Apmis, 2014, 122, 505-511.	0.9	9
13	Morphology of struvite crystals as an evidence of bacteria mediated growth. Crystal Research and Technology, 2014, 49, 478-489.	0.6	18
14	Inhibition of crystallization caused by Proteus mirabilis during the development of infectious urolithiasis by various phenolic substances. Microbiological Research, 2014, 169, 579-584.	2.5	36
15	Comparative in vitro studies on disodium EDTA effect with and without Proteus mirabilis on the crystallization of carbonate apatite and struvite. Journal of Crystal Growth, 2014, 395, 123-131.	0.7	7
16	InÂvitro studies of epithelium-associated crystallization caused by uropathogens during urinary calculi development. Microbial Pathogenesis, 2014, 71-72, 25-31.	1.3	20
17	Analysis of Proteus mirabilis Distribution in Multi-Species Biofilms on Urinary Catheters and Determination of Bacteria Resistance to Antimicrobial Agents. Polish Journal of Microbiology, 2013, 62, 377-384.	0.6	17
18	Analysis of Proteus mirabilis distribution in multi-species biofilms on urinary catheters and determination of bacteria resistance to antimicrobial agents. Polish Journal of Microbiology, 2013, 62, 377-84.	0.6	9

#	Article	IF	CITATIONS
19	Effect of Curcumin Against <i>Proteus mirabilis</i> During Crystallization of Struvite from Artificial Urine. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-7.	0.5	34
20	Unique surface and internal structure of struvite crystals formed by Proteus mirabilis. Urological Research, 2012, 40, 699-707.	1.5	79
21	<i>Ab initio</i> predictions of structural and elastic properties of struvite: contribution to urinary stone research. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 1329-1336.	0.9	10
22	Molecular and Genetic Analyses of the Putative <i>Proteus</i> O Antigen Gene Locus. Applied and Environmental Microbiology, 2010, 76, 5471-5478.	1.4	16
23	Enterocyte-like Caco-2 cells as a model for in vitro studies of diarrhoeagenic Providencia alcalifaciens invasion. Microbial Pathogenesis, 2010, 49, 285-293.	1.3	16
24	Density Functional Theory Determination of Structural and Electronic Properties of Struvite. Journal of Physical Chemistry A, 2010, 114, 7800-7808.	1.1	12
25	Bacterially Induced Struvite Growth from Synthetic Urine: Experimental and Theoretical Characterization of Crystal Morphology. Crystal Growth and Design, 2009, 9, 3538-3543.	1.4	84
26	The structure of the O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O36 containing 3-deoxy-d-manno-oct-2-ulosonic acid. Carbohydrate Research, 2007, 342, 665-670.	1.1	11
27	Structure of the O-polysaccharide and serological cross-reactivity of the lipopolysaccharide of Providencia alcalifaciens O32 containing N-acetylisomuramic acid. Carbohydrate Research, 2007, 342, 268-273.	1.1	7
28	Structure of the O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O29. Carbohydrate Research, 2006, 341, 1181-1185.	1.1	7
29	Structures and serology of the O-antigens of Proteus strains classified into serogroup O17 and former serogroup O35. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 277-282.	1.0	3
30	The structure of the O-polysaccharide from the lipopolysaccharide of Providencia alcalifaciens O30. Carbohydrate Research, 2006, 341, 786-790.	1.1	7
31	The O-polysaccharide from the lipopolysaccharide of Providencia stuartii O44 contains l-quinovose, a 6-deoxy sugar rarely occurring in bacterial polysaccharides. Carbohydrate Research, 2005, 340, 1419-1423.	1.1	13
32	The structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O57 containing an amide of d-galacturonic acid with l-alanine. Carbohydrate Research, 2005, 340, 775-780.	1.1	10
33	Structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O43 containing an amide of d-galacturonic acid with l-serine. Carbohydrate Research, 2005, 340, 1407-1411.	1.1	8
34	Structure and cross-reactivity of the O-antigen of Providencia stuartii O18 containing 3-acetamido-3,6-dideoxy-d-glucose. Carbohydrate Research, 2004, 339, 409-413.	1.1	17
35	Structure of the O-polysaccharide and serological cross-reactivity of theProvidencia stuartiiO33 lipopolysaccharide containing 4-(N-acetyl-d-aspart-4-yl)amino-4,6-dideoxy-d-glucose. FEMS Immunology and Medical Microbiology, 2004, 41, 133-139.	2.7	16
36	Structure of the O-polysaccharide of Providencia stuartii O4 containing 4-(N-acetyl-l-aspart-4-yl)amino-4,6-dideoxy-d-glucose. Carbohydrate Research, 2004, 339, 195-200.	1.1	20

Agnieszka Torzewska

#	Article	IF	CITATIONS
37	Structure of the O-polysaccharide of Providencia alcalifaciens O19. Carbohydrate Research, 2004, 339, 415-419.	1.1	9
38	Structure of the O-polysaccharide of Providencia stuartii O49. Carbohydrate Research, 2004, 339, 1557-1560.	1.1	24
39	The structure of the O-polysaccharide from the lipopolysaccharide of Providencia stuartii O47. Carbohydrate Research, 2004, 339, 2621-2626.	1.1	9
40	Serological characterization of the O-specific polysaccharide of Providencia alcalifaciens O23. Archivum Immunologiae Et Therapiae Experimentalis, 2004, 52, 43-9.	1.0	4
41	Structure of the O-specific polysaccharide of Providencia rustigianii O14 containing NÎμ-[(S)-1-carboxyethyl]-Nα-(d-galacturonoyl)-l-lysine. Carbohydrate Research, 2003, 338, 1009-1016.	1.1	17
42	Structure of the O-polysaccharide of Providencia alcalifaciens O21 containing 3-formamido-3,6-dideoxy-d-galactose. Carbohydrate Research, 2003, 338, 1425-1430.	1.1	14
43	Crystallization of urine mineral components may depend on the chemical nature of Proteus endotoxin polysaccharides. Journal of Medical Microbiology, 2003, 52, 471-477.	0.7	66
44	Structure of the O-specific polysaccharide of Proteus vulgaris O15 containing a novel regioisomer of N-acetylmuramic acid, 2-acetamido-4-O-[(R)-1-carboxyethyl]-2-deoxy-d-glucose. Carbohydrate Research, 2002, 337, 2463-2468.	1.1	6
45	New structures of the O-specific polysaccharides of Proteus. 2. Polysaccharides containing O-acetyl groups. Biochemistry (Moscow), 2002, 67, 201-211.	0.7	13
46	Structure of the O-specific polysaccharide ofProteus vulgarisO37 and close serological relatedness of the lipopolysaccharides of P. vulgarisO37 and P. vulgarisO46. FEMS Immunology and Medical Microbiology, 2001, 31, 227-234.	2.7	16
47	Structure of an O-acetylated acidic O-specific polysaccharide of Proteus vulgaris O46. Carbohydrate Research, 2000, 328, 229-234.	1.1	13
48	Structure of a glycerol teichoic acid-like O-specific polysaccharide of Proteus vulgaris O12. FEBS Journal, 2000, 267, 788-793.	0.2	11
49	Epitope Specificity of Polyclonal Rabbit Antisera Against Proteus Vulgaris O-Antigens. , 2000, 485, 243-247.		0
50	Structure and serological specificity of a new acidic O-specific Ã ⁻ ¿½polysaccharide ofProteus vulgarisO45. FEBS Journal, 1999, 259, 212-217.	0.2	13
51	Structural and serological studies on a new acidic O-specific polysaccharide of Proteus vulgaris O32. FEBS Journal, 1998, 256, 488-493.	0.2	29
52	Proteus sp. – an opportunistic bacterial pathogen – classification, swarming growth, clinical significance and virulence factors. Acta Universitatis Lodziensis Folia Biologica Et Oecologica, 0, 8, 1-17.	1.0	35