
Giovanni Talarico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen evolution reaction at the Mo/W-doped bismuth vanadate surface: Assessing the dopant role by DFT calculations. Molecular Catalysis, 2022, 517, 112036.	1.0	11
2	Synthesis and photophysical properties of novel oxadiazole substituted BODIPY fluorophores. New Journal of Chemistry, 2022, 46, 5725-5729.	1.4	4
3	Crystallization of Propene–Pentene Isotactic Copolymers as an Indicator of the General View of the Crystallization Behavior of Isotactic Polypropylene. Macromolecules, 2022, 55, 241-251.	2.2	10
4	Structure and Morphology of Crystalline Syndiotactic Polypropylene-Polyethylene Block Copolymers. Polymers, 2022, 14, 1534.	2.0	9
5	Structure and morphology of isotactic polypropylene–polyethylene block copolymers prepared with living and stereoselective catalyst. Polymer Chemistry, 2022, 13, 2950-2963.	1.9	9
6	Modeling the spectral properties of poly(xâ€phenylenediamine) conducting polymers using a combined <scp>TDâ€DFT</scp> and electrostatic embedding approach. Journal of Computational Chemistry, 2022, 43, 2001-2008.	1.5	3
7	Synthesis and antiviral properties of biomimetic iminosugar-based nucleosides. European Journal of Medicinal Chemistry, 2022, , 114618.	2.6	0
8	Microstructural insight on strain-induced crystallization of ethylene/propylene(/diene) random copolymers. Polymer, 2021, 227, 123848.	1.8	2
9	Mechanical Properties and Elastic Behavior of Copolymers of Syndiotactic Polypropylene with 1-Hexene and 1-Octene. Macromolecules, 2021, 54, 6810-6823.	2.2	3
10	Mechanistic Aspects of the Palladiumâ€Catalyzed Suzukiâ€Miyaura Crossâ€Coupling Reaction. Chemistry - A European Journal, 2021, 27, 13481-13493.	1.7	97
11	Double Crystallization and Phase Separation in Polyethylene—Syndiotactic Polypropylene Di-Block Copolymers. Polymers, 2021, 13, 2589.	2.0	7
12	Frontispiece: Mechanistic Aspects of the Palladium atalyzed Suzukiâ€Miyaura Cross oupling Reaction. Chemistry - A European Journal, 2021, 27, .	1.7	2
13	Synthesis and spectroscopic properties of rotamers in the series of 2-(fluoroaryl)-4-substituted pyrroles. Journal of Fluorine Chemistry, 2021, 249, 109863.	0.9	2
14	Syndiotactic PLA from <i>meso</i> -LA polymerization at the Al-chiral complex: a probe of DFT mechanistic insights. Chemical Communications, 2021, 57, 1611-1614.	2.2	17
15	In-Depth Analysis of the Nonuniform Chain Microstructure of Multiblock Copolymers from Chain-Shuttling Polymerization. Macromolecules, 2021, 54, 10891-10902.	2.2	17
16	Base-controlled product switch in the ruthenium-catalyzed protodecarbonylation of phthalimides: a mechanistic study. Catalysis Science and Technology, 2020, 10, 180-186.	2.1	9
17	A Stereoconvergent Tsuji–Trost Reaction in the Synthesis of Cyclohexenyl Nucleosides. Chemistry - A European Journal, 2020, 26, 2597-2601.	1.7	7
18	The blocky structure of Ziegler–Natta "random―copolymers: myths and experimental evidence. Polymer Chemistry, 2020, 11, 34-38.	1.9	24

#	Article	IF	CITATIONS
19	The role of noncovalent interactions in olefin polymerization catalysis: a further look to the fluorinated ligand effect. Molecular Catalysis, 2020, 494, 111118.	1.0	6
20	Allyl Monitorization of the Regioselective Pd-Catalyzed Annulation of Alkylnyl Aryl Ethers Leading to Bismethylenechromanes. Journal of Organic Chemistry, 2020, 85, 12262-12269.	1.7	5
21	Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. Molecular Catalysis, 2020, 496, 111181.	1.0	29
22	Arene vs. Alkene Substrates in Ruâ€Catalyzed Olefin Metathesis: a DFT Investigation. European Journal of Organic Chemistry, 2020, 2020, 4743-4749.	1.2	5
23	Stereoselective Lactide Polymerization: the Challenge of Chiral Catalyst Recognition. ACS Catalysis, 2020, 10, 2221-2225.	5.5	34
24	Breaking Symmetry Rules Enhance the Options for Stereoselective Propene Polymerization Catalysis. Macromolecules, 2020, 53, 2959-2964.	2.2	10
25	Polyolefins based crystalline block copolymers: Ordered nanostructures from control of crystallization. Polymer, 2020, 196, 122423.	1.8	20
26	A General Model to Explain the Isoselectivity of Olefin Polymerization Catalysts. , 2019, , 269-285.		3
27	Tacticity, Regio and Stereoregularity. , 2019, , 1-35.		4
28	Crystallization Behavior of Copolymers of Isotactic Poly(1-butene) with Ethylene from Ziegler–Natta Catalyst: Evidence of the Blocky Molecular Structure. Macromolecules, 2019, 52, 9114-9127.	2.2	31
29	Noncovalent Interactions in Olefin Polymerization Catalysis Promoted by Transition Metals. RSC Catalysis Series, 2019, , 393-414.	0.1	0
30	Mechanical Properties and Morphology of Propene–Pentene Isotactic Copolymers. Macromolecules, 2018, 51, 3030-3040.	2.2	25
31	Relationships among lamellar morphology parameters, structure and thermal behavior of isotactic propene-pentene copolymers: The role of incorporation of comonomeric units in the crystals. European Polymer Journal, 2018, 103, 251-259.	2.6	21
32	Unraveling the role of entropy in tuning unimolecular vs. bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals. Molecular Catalysis, 2018, 452, 138-144.	1.0	70
33	Alternating Copolymerization of CO ₂ and Cyclohexene Oxide by New Pyridylamidozinc(II) Catalysts. Macromolecules, 2018, 51, 9871-9877.	2.2	14
34	Unveiling the molecular structure of ethylene/1-octene multi-block copolymers from chain shuttling technology. Polymer, 2018, 154, 298-304.	1.8	29
35	Computational modeling of heterogeneous Ziegler-Natta catalysts for olefins polymerization. Progress in Polymer Science, 2018, 84, 89-114.	11.8	120
36	Controlling Size and Orientation of Lamellar Microdomains in Crystalline Block Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 31252-31259.	4.0	21

#	Article	IF	CITATIONS
37	Oxidative Coupling of Imino, Amide Platinum(II) Complexes Yields Highly Conjugated Blue Dimers. Organometallics, 2017, 36, 384-390.	1.1	15
38	Ligand Coordination Driven by Monomer and Polymer Chain: The Intriguing Case of Salalen–Ti Catalyst for Propene Polymerization. Macromolecules, 2017, 50, 5332-5336.	2.2	16
39	Combined Experimental and Theoretical Approach for Living and Isoselective Propylene Polymerization. ACS Catalysis, 2017, 7, 6930-6937.	5.5	46
40	Expanding the Origin of Stereocontrol in Propene Polymerization Catalysis. ACS Catalysis, 2016, 6, 3767-3770.	5.5	45
41	Relationships among migration properties, molecular structure and catalytic process of isotactic copolymers of propene. European Polymer Journal, 2016, 82, 277-289.	2.6	5
42	Oriented Microstructures of Crystalline–Crystalline Block Copolymers Induced by Epitaxy and Competitive and Confined Crystallization. Macromolecules, 2016, 49, 5576-5586.	2.2	28
43	How easy is CO ₂ fixation by M–C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?. Organic Chemistry Frontiers, 2016, 3, 19-23.	2.3	24
44	α-Agostic Interactions and Growing Chain Orientation for Olefin Polymerization Catalysts. Organometallics, 2016, 35, 47-54.	1.1	17
45	Mechanism of CO2Fixation by Irl-X Bonds (X = OH, OR, N, C). European Journal of Inorganic Chemistry, 2015, 2015, 4614-4614.	1.0	0
46	Mechanism of CO ₂ Fixation by Ir ^I –X Bonds (X = OH, OR, N, C). European Journal of Inorganic Chemistry, 2015, 2015, 4653-4657.	1.0	20
47	Buried Volume Analysis for Propene Polymerization Catalysis Promoted by Group 4 Metals: A Tool for Molecular Mass Prediction. ACS Catalysis, 2015, 5, 6815-6822.	5.5	69
48	Unusual Hafnium-Pyridylamido/ERnHeterobimetallic Adducts (ERn=ZnR2or AlR3). Angewandte Chemie, 2014, 126, 2189-2193.	1.6	5
49	Unusual Hafnium–Pyridylamido/ER _{<i>n</i>} Heterobimetallic Adducts (ER _{<i>n</i>} =ZnR ₂ or AlR ₃). Angewandte Chemie - International Edition, 2014, 53, 2157-2161.	7.2	45
50	Analysis of Stereochemistry Control in Homogeneous Olefin Polymerization Catalysis. Organometallics, 2014, 33, 5974-5982.	1.1	24
51	Crystal Polymorphism and Crystal Transformations of Isotactic Poly(5-methylhexene-1). Macromolecules, 2013, 46, 4872-4881.	2.2	4
52	The relationship between catalyst precursors and chain end groups in homogeneous propene polymerization catalysis. Journal of Polymer Science Part A, 2010, 48, 699-708.	2.5	16
53	Improving the Behavior of Bis(phenoxyamine) Group 4 Metal Catalysts for Controlled Alkene Polymerization. Macromolecules, 2009, 42, 3869-3872.	2.2	48
54	Hafnocenes and MAO: Beware of Trimethylaluminum!. Macromolecules, 2009, 42, 1789-1791.	2.2	69

#	Article	IF	CITATIONS
55	On the First Insertion of α-Olefins in Hafnium Pyridyl-Amido Polymerization Catalysts. Organometallics, 2009, 28, 5445-5458.	1.1	98
56	"Uni et Triniâ€: In Situ Diversification of (Pyridylamide)hafnium(IV) Catalysts. Macromolecules, 2009, 42, 4369-4373.	2.2	60
57	Intra- and Intermolecular NMR Studies on the Activation of Arylcyclometallated Hafnium Pyridyl-Amido Olefin Polymerization Precatalysts. Journal of the American Chemical Society, 2008, 130, 10354-10368.	6.6	107
58	Variability of Chain Transfer to Monomer Step in Olefin Polymerization. Organometallics, 2008, 27, 4098-4107.	1.1	59
59	Interface Between Alkylammonium Ions and Layered Aluminophosphates Materials: A Combined Theoretical and Experimental Study. Chemistry of Materials, 2008, 20, 4980-4985.	3.2	7
60	A New Crystalline Form of Syndiotactic Poly(1-butene): Crystal Structure of Form l′. Macromolecules, 2008, 41, 5301-5306.	2.2	11
61	Stress-Induced Phase Transitions in Syndiotactic Propeneâ^'Butene Copolymers. Macromolecules, 2008, 41, 8712-8720.	2.2	19
62	Structure of Isotactic Propyleneâ^'Pentene Copolymers. Macromolecules, 2007, 40, 8531-8532.	2.2	56
63	Alk-1-ene Polymerization in the Presence of a Monocyclopentadienyl Zirconium(IV) Acetamidinate Catalyst: Microstructural and Mechanistic Insights. Macromolecular Rapid Communications, 2007, 28, 1128-1134.	2.0	22
64	Regiochemistry of propene insertion with group 4 polymerization catalysts from a theoretical perspective. Journal of Organometallic Chemistry, 2007, 692, 4519-4527.	0.8	35
65	A possible 2,1→3,1 isomerization mechanism in zirconocene-catalyzed propene polymerization: An application of the density functional theory and combined ONIOM approach. Journal of Organometallic Chemistry, 2007, 692, 4227-4236.	0.8	12
66	Periodic and High-Temperature Disordered Conformations of Polytetrafluoroethylene Chains:Â An ab Initio Modeling. Journal of the American Chemical Society, 2006, 128, 1099-1108.	6.6	46
67	A Second Transition State for Chain Transfer to Monomer in Olefin Polymerization Promoted by Group 4 Metal Catalysts. Journal of the American Chemical Society, 2006, 128, 4524-4525.	6.6	41
68	Molecular modeling of the regiochemistry of olefin insertion with single-site polymerization catalysts. Kinetics and Catalysis, 2006, 47, 170-175.	0.3	7
69	Living propene polymerization with Bis(phenoxy-imine) group 4 metal catalysts: A theoretical study. Kinetics and Catalysis, 2006, 47, 289-294.	0.3	5
70	Nonconventional Catalysts for Isotactic Propene Polymerization in Solution Developed by Using High-Throughput-Screening Technologies. Angewandte Chemie - International Edition, 2006, 45, 3278-3283.	7.2	232
71	Design of stereoselective Ziegler-Natta propene polymerization catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15321-15326.	3.3	89
72	Living Ziegler-Natta Polymerizations: True or False?. Macromolecular Symposia, 2005, 226, 1-16.	0.4	25

#	Article	IF	CITATIONS
73	Influence of Zieglerâ~'Natta Catalyst Regioselectivity on Polypropylene Molecular Weight Distribution and Rheological and Crystallization Behavior. Macromolecules, 2004, 37, 9722-9727.	2.2	89
74	Crystallization properties of elastomeric polypropylene from alumina-supported tetraalkyl zirconium catalysts. Polymer, 2004, 45, 5875-5888.	1.8	24
75	Propene/Ethene-[1-13C] Copolymerization as a Tool for Investigating Catalyst Regioselectivity. MgCl2/Internal Donor/TiCl4â^'External Donor/AlR3Systems. Macromolecules, 2004, 37, 7437-7443.	2.2	80
76	"Living―Propene Polymerization with Bis(phenoxyimine) Group 4 Metal Catalysts: New Strategies and Old Concepts. Organometallics, 2004, 23, 5989-5993.	1.1	85
77	Comparison between Polymorphic Behaviors of Zieglerâ^'Natta and Metallocene-Made Isotactic Polypropylene:Â The Role of the Distribution of Defects in the Polymer Chains. Macromolecules, 2004, 37, 1441-1454.	2.2	99
78	Block Copolymers of Highly Isotactic Polypropylene via Controlled Zieglerâ^'Natta Polymerization. Macromolecules, 2004, 37, 8201-8203.	2.2	101
79	Propene/Ethene-[1-13C] Copolymerization as a Tool for Investigating Catalyst Regioselectivity. 2. The MgCl2/TiCl4â	2.2	63
80	Syndiotactic Poly(propylene) from [Me2Si(3,6-di-tert-butyl-9-fluorenyl)(N-tert-butyl)]TiCl2–Based Catalysts: Chain-End or Enantiotopic-Sites Stereocontrol?. Macromolecular Chemistry and Physics, 2003, 204, 1269-1274.	1.1	25
81	General computational strategy to study polymerization reactions at aluminum-based catalysts. International Journal of Quantum Chemistry, 2003, 91, 474-482.	1.0	6
82	Structure of Copolymers of Syndiotactic Polypropylene with Ethylene. Macromolecules, 2003, 36, 1850-1864.	2.2	22
83	"Oscillating―Metallocene Catalysts: What Stops the Oscillation?. Journal of the American Chemical Society, 2003, 125, 5451-5460.	6.6	78
84	Origin of the Regiochemistry of Propene Insertion at Octahedral Column 4 Polymerization Catalysts:Â Design or Serendipity?. Journal of the American Chemical Society, 2003, 125, 7172-7173.	6.6	83
85	Insertion and \hat{I}^2 -Hydrogen Transfer at Aluminium. Structure and Bonding, 2003, , 141-165.	1.0	15
86	Mono- and Dinuclear Olefin Reactions at Aluminum. Organometallics, 2002, 21, 34-38.	1.1	18
87	Structural Analysis of Copolymers of Syndiotactic Polypropylene with13C-Enriched Ethylene. Macromolecules, 2002, 35, 1314-1318.	2.2	19
88	Mono-and Dinuclear Olefin Polymerization at Aluminum. ACS Symposium Series, 2002, , 142-152.	0.5	1
89	"Chain-End-Controlled Isotactic―and "Stereoblock-Isotactic―Polypropylene: Where Is the Difference?. Israel Journal of Chemistry, 2002, 42, 295-299.	1.0	9
90	Comparison of ab Initio and DFT Methods for Studying Chain Propagation and Chain Termination Processes with Group 4 Polymerization Catalysts. 1. The ansa-Bis(cyclopentadienyl)zirconium Catalyst. Organometallics, 2002, 21, 4939-4949.	1.1	49

6

#	Article	IF	CITATIONS
91	The strange case of the "oscillating―catalysts. Macromolecular Symposia, 2002, 189, 127-141.	0.4	13
92	"Oscillating―Metallocene Catalysts: How Do They Oscillate?. Angewandte Chemie - International Edition, 2002, 41, 505-508.	7.2	67
93	"Oscillating―Metallocene Catalysts: How Do They Oscillate?. , 2002, 41, 505.		1
94	Olefin Polymerization at Aluminum? A Theoretical Study. Organometallics, 2001, 20, 4721-4726.	1.1	41
95	Modeling Polymerization Reactions at Aluminum-Based Catalysts:Â Is DFT a Reliable Computational Tool?. Journal of Physical Chemistry A, 2001, 105, 9014-9023.	1.1	15
96	Polymorphism and Structural Disorder in Melt-Crystallized and Fiber Samples of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 2001, 34, 1663-1672.	2.2	16
97	"Seeing―the Stereoblock Junctions in Polypropylene Made with Oscillating Metallocene Catalysts. Macromolecules, 2001, 34, 8412-8415.	2.2	34
98	Ethylene coordination, insertion, and chain transfer at a cationic aluminum center: A comparative study withAb Initio correlated level and density functional methods. Journal of Computational Chemistry, 2000, 21, 398-410.	1.5	30
99	Solid state 13C NMR analysis of syndiotactic copolymers of propene with 1-butene. Polymer, 2000, 41, 2141-2148.	1.8	23
100	A theoretical study of the competition between ethylene insertion and chain transfer in cationic aluminum systems. Chemical Physics Letters, 2000, 329, 99-105.	1.2	16
101	Ethene Polymerization at Cationic Aluminum Amidinate and Neutral Aluminum Alkyl. A Theoretical Study. Organometallics, 2000, 19, 5691-5695.	1.1	52
102	Advances in Propene Polymerization Using Magnesium Chloride-Supported Catalysts. ACS Symposium Series, 1999, , 50-65.	0.5	4
103	High-Resolution13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Zieglerâ^'Natta Catalysts. 1. The "Model―System MgCl2/TiCl4â^'2,6-Dimethylpyridine/Al(C2H5)3. Macromolecules, 1999, 32, 4173-4182.	2.2	195
104	New insight into propene polymerization promoted by heterogeneous Ziegler-Natta catalysts. , 1999, , 76-88.		3
105	Structural Characterization of Syndiotactic Copolymers of Propene with 1-Butene. Macromolecules, 1998, 31, 9109-9115.	2.2	44
106	High-Field13C NMR Characterization of Ethene-1-13C/Propene Copolymers Prepared withCs-Symmetricansa-Metallocene Catalysts:Â A Deeper Insight into the Regio- and Stereoselectivity of Syndiotactic Propene Polymerization. Macromolecules, 1998, 31, 8720-8724.	2.2	32
107	Highly Regioselective Transition-Metal-Catalyzed 1-Alkene Polymerizations:Â A Simple Method for the Detection and Precise Determination of Regioirregular Monomer Enchainments. Macromolecules, 1998, 31, 2387-2390.	2.2	45
108	New Evidence on the Nature of the Active Sites in Heterogeneous Zieglerâ^'Natta Catalysts for Propene Polymerization. Macromolecules, 1997, 30, 4786-4790.	2.2	49

#	Article	IF	CITATIONS
109	Synthesis, structure and properties of copolymers of syndiotactic polypropylene with 1-hexene and 1-octene. Polymer Chemistry, 0, , .	1.9	1
110	Switchable light vs acid-induced transformations of complex framework compounds at room temperature. Green Chemistry, 0, , .	4.6	2
111	Combining Both Acceptorless Dehydrogenation and Borrowing Hydrogen Mechanisms in One System as Described by DFT Calculations. Advanced Theory and Simulations, 0, , 2100566.	1.3	4