A V Sybachin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4722589/publications.pdf

Version: 2024-02-01

430442 552369 64 895 18 26 citations h-index g-index papers 64 64 64 716 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polymeric stabilizers for protection of soil and ground against wind and water erosion. Advances in Colloid and Interface Science, 2015, 226, 17-23.	7.0	56
2	Complexation of Polycations to Anionic Liposomes:  Composition and Structure of the Interfacial Complexes. Langmuir, 2007, 23, 10034-10039.	1.6	46
3	Liposome Fusion Rates Depend upon the Conformation of Polycation Catalysts. Journal of the American Chemical Society, 2011, 133, 2881-2883.	6.6	37
4	Capacious and programmable multi-liposomal carriers. Nanoscale, 2015, 7, 1635-1641.	2.8	34
5	Non-stoichiometric interpolyelectrolyte complexes: Promising candidates for protection of soils. Geoderma, 2017, 307, 91-97.	2.3	34
6	Liposomes Remain Intact When Complexed with Polycationic Brushes. Journal of the American Chemical Society, 2010, 132, 5948-5949.	6.6	33
7	The Influence of the Chain Length of Polycations on their Complexation with Anionic Liposomes. ChemPhysChem, 2015, 16, 2849-2853.	1.0	30
8	Payload release by liposome burst: Thermal collapse of microgels induces satellite destruction. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1491-1494.	1.7	29
9	Multi-liposomal containers. Advances in Colloid and Interface Science, 2015, 226, 54-64.	7.0	28
10	Conformational Changes of Aliphatic Ionenes in Water-Salt Solutions as a Factor Controlling Stability of Their Complexes with Calf Thymus DNA. Macromolecules, 2003, 36, 2066-2071.	2.2	25
11	The one-step synthesis of polymer-based magnetic \hat{I}^3 -Fe2O3/carboxymethyl cellulose nanocomposites. Carbohydrate Polymers, 2017, 177, 269-274.	5.1	25
12	Stability of anionic liposome-cationic polymer complexes in water-salt media. Colloid Journal, 2011, 73, 430-435.	0.5	24
13	pH-Sensitive liposomes with embedded 3,7-diazabicyclo[3.3.1]nonane derivative. Mendeleev Communications, 2014, 24, 152-153.	0.6	24
14	Bispidinone-based molecular switches for construction of stimulus-sensitive liposomal containers. Tetrahedron, 2014, 70, 1408-1411.	1.0	24
15	Controlled phase separations in solutions of polyelectrolyte complexes Potential for gene delivery. Journal of Drug Delivery Science and Technology, 2006, 16, 267-274.	1.4	23
16	Electrostatically Driven Complexation of Liposomes with a Starâ€ <scp>S</scp> haped Polyelectrolyte to Lowâ€ <scp>T</scp> oxicity Multiâ€ <scp>L</scp> iposomal Assemblies. Macromolecular Bioscience, 2014, 14, 491-495.	2.1	23
17	Composition and Properties of Complexes between Spherical Polycationic Brushes and Anionic Liposomes. Langmuir, 2012, 28, 16108-16114.	1.6	20
18	Biodegradable multi-liposomal containers. RSC Advances, 2015, 5, 31460-31464.	1.7	20

#	Article	IF	CITATIONS
19	Phase separation in solutions of polyelectrolyte complexes: The decisive effect of a host polyion. Polymer Science - Series A, 2006, 48, 1098-1104.	0.4	18
20	Lipid Segregation in Membranes of Anionic Liposomes Adsorbed onto Polycationic Brushes. Chemistry - A European Journal, 2013, 19, 13674-13678.	1.7	18
21	Humicsâ€based interpolyelectrolyte complexes for antierosion protection of soil: Model investigation. Land Degradation and Development, 2019, 30, 337-347.	1.8	18
22	Effect of anionic-lipid-molecule geometry on the structure and properties of liposome-polycation complexes. Polymer Science - Series C, 2011, 53, 89-96.	0.8	17
23	Complexes between Anionic Liposomes and Spherical Polycationic Brushes. An Assembly of Assemblies. Langmuir, 2014, 30, 2441-2447.	1.6	17
24	Effects of the electrostatic complexation between anionic pH-sensitive liposomes and star-shaped polycations on the release of the liposomal content. Mendeleev Communications, 2016, 26, 276-278.	0.6	16
25	Biodegradable containers composed of anionic liposomes and cationic polypeptide vesicles. RSC Advances, 2015, 5, 98687-98691.	1.7	15
26	Effect of the phase state of the lipid bilayer on the structure and characteristics of the polycation-(anionic liposome) complex. Polymer Science - Series A, 2009, 51, 638-647.	0.4	14
27	Complexation of Anionic Liposomes with Spherical Polycationic Brushes. Langmuir, 2011, 27, 5310-5315.	1.6	14
28	Nanocomposite biomimetic vesicles based on interfacial complexes of polyelectrolytes and colloid magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 26-35.	2.3	14
29	Radiation-induced preparation of metal nanostructures in coatings of interpolyelectrolyte complexes. Radiation Physics and Chemistry, 2019, 162, 23-30.	1.4	14
30	Biocidal Polymer Formulations and Coatings. Polymer Science - Series B, 2021, 63, 459-469.	0.3	13
31	Modification of Polydiallyldimethylammonium Chloride with Sodium Polystyrenesulfonate Dramatically Changes the Resistance of Polymer-Based Coatings towards Wash-Off from Both Hydrophilic and Hydrophobic Surfaces. Polymers, 2022, 14, 1247.	2.0	11
32	Aminoâ€terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drugâ€loaded anionic liposomes. Polymer International, 2018, 67, 1352-1358.	1.6	10
33	Biodegradable multi-liposomal containers. Polymer Science - Series B, 2015, 57, 140-144.	0.3	9
34	Complexes of star-shaped cationic polyelectrolytes with anionic liposomes: Towards multi-liposomal assemblies with controllable stability. Polymer, 2016, 93, 198-203.	1.8	9
35	Variable and low-toxic polyampholytes: complexation with biological membranes. Colloid and Polymer Science, 2017, 295, 1405-1417.	1.0	9
36	Magnetoâ€sensitive and enzymatic hydrolysisâ€resistant systems for the targeted delivery of paclitaxel based on polylactide micelles with an external polyethylene oxide corona. Polymer International, 2022, 71, 456-463.	1.6	9

3

#	Article	IF	CITATIONS
37	Water-Soluble Magnetic Nanocomposites Based on Carboxymethyl Cellulose and Iron(III) Oxide. Polymer Science - Series B, 2018, 60, 116-121.	0.3	8
38	A facile approach to prepare water-soluble magnetic metal (oxide) frameworks based on Na,Ca alginate and maghemite. Mendeleev Communications, 2021, 31, 412-414.	0.6	8
39	Novel water-soluble vehicle based on iron-containing nanospecies and hydroxypropyl- \hat{l}^2 -cyclodextrin. Mendeleev Communications, 2015, 25, 286-287.	0.6	7
40	Adjusting the size of multicompartmental containers made of anionic liposomes and polycations by introducing branching and PEO moieties. Polymer, 2017, 121, 320-327.	1.8	7
41	Langmuir monolayers and Langmuir-Blodgett films of pH-sensitive lipid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 150-154.	2.3	7
42	Stabilization of electrostatic polymer-colloid complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 1-7.	2.3	7
43	Polyelectrolyte Complexes of Potassium Humates and Poly(dialyldimethylammonium chloride) for Fixing Sand Soil. Polymer Science - Series B, 2019, 61, 698-703.	0.3	7
44	Electrostatic complexes of liquid and solid liposomes with spherical polycationic brushes. Polymer Science - Series C, 2017, 59, 60-67.	0.8	6
45	Magneto-sensitive hybrid nanocomposites of water-soluble sodium alginate cross-linked with calcium ions and maghemite. EXPRESS Polymer Letters, 2018, 12, 452-461.	1.1	6
46	Structure and properties of complexes of polycationic brushes with anionic liposomes. Polymer Science - Series A, 2011, 53, 1019-1025.	0.4	5
47	Composition and properties of complexes between anionic liposomes and diblock copolymers with cationic and poly(ethylene oxide) blocks. Polymer International, 2017, 66, 1669-1674.	1.6	5
48	Cationic colloid–anionic liposome–protein ternary complex: formation, properties, and biomedical importance. Mendeleev Communications, 2018, 28, 326-328.	0.6	5
49	PEO-b-PPO star-shaped polymers enhance the structural stability of electrostatically coupled liposome/polyelectrolyte complexes. PLoS ONE, 2019, 14, e0210898.	1.1	5
50	The Effect of Cationic Polylysine on the Release of an Encapsulated Substance from pH-Sensitive Anionic Liposomes. Polymer Science - Series A, 2019, 61, 308-316.	0.4	4
51	Unusual behavior of saline solutions of polyelectrolyte complexes containing guest oligomers. Polymer Science - Series B, 2006, 48, 78-79.	0.3	3
52	Composition-dependent mechanism of formation of \hat{l}^3 -Fe2O3/carboxymethylcellulose nanocomposites. Mendeleev Communications, 2020, 30, 768-769.	0.6	3
53	Doxorubicin Loaded Magnetosensitive Waterâ€Soluble Nanogel Based on NIPAM and Iron (3+) Containing Nanoparticles. Macromolecular Symposia, 2020, 389, 1900072.	0.4	3
54	Modification of Multiliposomal Nanocontainers with Albumin as a Method for Increasing Their Resistance to Enzymatic Hydrolysis. Colloid Journal, 2021, 83, 252-258.	0.5	3

#	Article	IF	CITATIONS
55	Multifunctional carriers for controlled drug delivery. Pure and Applied Chemistry, 2020, 92, 919-939.	0.9	3
56	Dark and photoinduced cytotoxicity of solubilized hydrophobic octa-and hexadecachloro-substituted lutetium(III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113747.	2.0	3
57	Interaction of liposomes with silica nanocapsules: from lipid bilayer coating to multi-liposomal composites. Mendeleev Communications, 2021, 31, 830-832.	0.6	3
58	Atomic force microscopy of supported lipid membranes and their complexes with polycations. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, 4, 240-246.	0.3	2
59	Magneto-Sensitive Multiliposomal Containers for Immobilization and Controlled Delivery of Bioactive Substances. Polymer Science - Series A, 2019, 61, 296-307.	0.4	2
60	The Interaction of Colloid–Liposome–Protein Ternary Complex with Biological Membrane. Polymer Science - Series A, 2020, 62, 32-42.	0.4	2
61	Competitive Reactions in Three-Component System Cationic Colloid–Anionic Liposome–Protein. Polymer Science - Series B, 2018, 60, 324-330.	0.3	1
62	Multiliposomal nanocontainers based on anionic solid liposomes and spherical polycationic brushes. IOP Conference Series: Materials Science and Engineering, 2016, 111, 012022.	0.3	0
63	Multifunctional Containers from Anionic Liposomes and Cationic Polymers/Colloids. Polymer Science - Series C, 2018, 60, 179-191.	0.8	0
64	A facile approach to prepare water-soluble magnetic metal (oxide) frameworks based on Na,Ca alginate and maghemite. Mendeleev Communications, 2021, 31, 412-414.	0.6	o