R Morgunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4721941/publications.pdf

Version: 2024-02-01

471371 454834 1,676 267 17 30 citations h-index g-index papers 271 271 271 1041 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spin micromechanics in the physics of plasticity. Physics-Uspekhi, 2004, 47, 125-147.	0.8	99
2	Molecular Metals Based on BEDT-TTF Radical Cation Salts with Magnetic Metal Oxalates as Counterions: $\hat{I}^2\hat{a}\in \mathbb{R}^3$ -(BEDT-TTF)4A[M(C2O4)3] $\hat{A}\cdot$ DMF (A = NH4+, K+; M = CrIII, FeIII). Advanced Functional Materials, 2003, 13, 403-411.	7.8	80
3	Single-Ion Magnet Et ₄ N[Co ^{II} (hfac) ₃] with Nonuniaxial Anisotropy: Synthesis, Experimental Characterization, and Theoretical Modeling. Inorganic Chemistry, 2016, 55, 9696-9706.	1.9	66
4	Electron paramagnetic resonance in a subsystem of structural defects as a factor in the plasticization of NaCl crystals. JETP Letters, 1998, 68, 426-431.	0.4	34
5	Magnetoresonant hardening of silicon single crystals. JETP Letters, 2004, 79, 126-130.	0.4	30
6	Electron spin resonance and microwave magnetoresistance in Ge:Mn thin films. Physical Review B, 2008, 78, .	1.1	30
7	Magnetoplasticity and magnetic memory in diamagnetic solids. Journal of Experimental and Theoretical Physics, 2009, 109, 434-441.	0.2	30
8	Synthesis, Structure, and Magnetic Properties of 1D {[Mn ^{Il} (dapsc)]} _{<i>n</i>} Coordination Polymers: Origin of Unconventional Single-Chain Magnet Behavior. Inorganic Chemistry, 2017, 56, 8926-8943.	1.9	29
9	Magnetoresonant softening of solids. Molecular Physics, 2002, 100, 1291-1296.	0.8	28
10	Spin solitons and spin waves in chiral and racemic molecular based ferrimagnets. Physical Review B, 2008, 77, .	1.1	28
11	Magnetization switching diagram of a perpendicular synthetic ferrimagnet CoFeB/Ta/CoFeB bilayer. Journal of Magnetism and Magnetic Materials, 2017, 433, 91-97.	1.0	28
12	Effect of magnetic defects and dimensionality on the spin dynamics of GeMn systems: Electron spin resonance measurements. Physical Review B, 2008, 77, .	1.1	27
13	Percolation ferromagnetism and spin waves in Ge:Mn thin films. Physical Review B, 2009, 80, .	1.1	23
14	Thermally-induced paramagnetism of spiropyrane iodides. New Journal of Chemistry, 2009, 33, 1374.	1.4	20
15	Magnetic field response of NaCl:Eu crystal plasticity due to spin-dependent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow> Physical Review B. 2010. 82</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	v>	nn>2
16	Slow magnetic relaxation in mononuclear complexes of Tb, Dy, Ho and Er with the pentadentate (N ₃ O ₂) Schiff-base dapsc ligand. New Journal of Chemistry, 2018, 42, 14883-14893.	1.4	19
17	Molecular magnetic semiconductors formed by cationic and anionic networks: (ET)2Mn[N(CN)2]3 and (ET)2CuMn[N(CN)2]4. Journal of Materials Chemistry, 2007, 17, 4407.	6.7	18
18	Effect of a weak magnetic field on the state of structural defects and the plasticity of ionic crystals. Journal of Experimental and Theoretical Physics, 1999, 88, 332-341.	0.2	17

#	Article	IF	CITATIONS
19	Halogen atom effect on the magnetic anisotropy of pseudotetrahedral Co(II) complexes with a quinoline ligand. Polyhedron, 2015, 102, 147-151.	1.0	17
20	Magnetic isotope and magnetic field effects on the silicon oxidation. Chemical Physics Letters, 2013, 560, 29-31.	1.2	16
21	Spin dynamics in magnetic semiconductor nanostructures. Physics of the Solid State, 2009, 51, 1985-2002.	0.2	15
22	Magnetic field effect on spin dependent conversion of nonequilibrium Si–O chemical bonds on the Czochralski-grown Si crystal surface. Journal of Applied Physics, 2011, 110, 044905.	1.1	15
23	Bifurcation of magnetic anisotropy caused by small addition of Sm in (Nd1â^'xSmxDy)(FeCo)B magnetic alloy. Journal of Applied Physics, 2015, 117, .	1.1	15
24	Ferromagnetism and microwave magnetoresistance of GaMnSb films. Physics of the Solid State, 2015, 57, 322-330.	0.2	15
25	Magnetic field and temperature control over Pt/Co/lr/Co/Pt multistate magnetic logic device. Superlattices and Microstructures, 2017, 104, 509-517.	1.4	15
26	Nonmonotonic aftereffect measurements in perpendicular synthetic ferrimagnets. Physical Review B, 2018, 98, .	1,1	15
27	Oscillatory dynamics of the magnetic moment of a Pt/Co/lr/Co/Pt synthetic antiferromagnet. Physical Review B, 2019, 100, .	1.1	15
28	New luminescent bands induced by plastic deformation of NaCl:Eu phosphors. Physica Status Solidi A, 2004, 201, 148-156.	1.7	14
29	Structure and properties of binuclear nitrosyl iron complex with benzimidazole-2-thiolyl. Dalton Transactions, 2009, , 1703.	1.6	14
30	A new type of magnetoplastic effects in linear amorphous polymers. Physics of the Solid State, 2001, 43, 859-864.	0.2	13
31	Spin-wave resonance in Ge1 \hat{a}^{2} x Mn x films exhibiting percolation ferromagnetism. Journal of Experimental and Theoretical Physics, 2009, 108, 985-991.	0.2	13
32	Effect of chirality on domain wall dynamics in molecular ferrimagnet [MnII(HL-pn)(H2O)][MnIII(CN)6]·2H2O. European Physical Journal B, 2011, 84, 219-225.	0.6	13
33	The first photochromic bimetallic assemblies based on Mn(<scp>iii</scp>) and Mn(<scp>ii</scp>) Schiff-base (salpn, dapsc) complexes and pentacyanonitrosylferrate. CrystEngComm, 2015, 17, 3866-3876.	1.3	13
34	Nonlinear spin-wave phenomena in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mo> [</mml:mo><mml:mrow><mm .<="" 2010,="" 82,="" b,="" physical="" review="" td=""><td>ıl:mtext>M</td><td>In<jızıml:mtex</td></mm></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ıl:m te xt>M	In< jız ıml:mtex
35	Magnetic Field Effect on Chemical Wave Propagation from the Belousov–Zhabotinsky Reaction. Journal of Physical Chemistry A, 2011, 115, 4592-4597.	1.1	12
36	Magnetic phase transition in É>-In x Fe2 â^' x O3 nanowires. Physics of the Solid State, 2013, 55, 2252-2259.	0.2	12

#	Article	IF	CITATIONS
37	Slow Magnetic Relaxation, Antiferromagnetic Ordering, and Metamagnetism in Mn ^{II} (H ₂ dapsc)â€Fe ^{III} (CN) ₆ Chain Complex with Highly Anisotropic Feâ€CNâ€Mn Spin Coupling. Chemistry - A European Journal, 2019, 25, 14583-14597.	1.7	12
38	Spin-reorientation transition in $\acute{\text{E}}$ -In0.24Fe1.76O3 nanowires. Physics of the Solid State, 2014, 56, 1795-1798.	0.2	11
39	Dislocations used to probe the defect state of an ionic crystal lattice excited by a pulsed magnetic field. Physics of the Solid State, 1997, 39, 554-558.	0.2	10
40	Electron spin resonance of charge carriers and antiferromagnetic clusters in Ge0.99Cr0.01 nanowires. Journal of Applied Physics, 2009, 105, 093922.	1.1	10
41	Electron spin resonance in InGaAs/GaAs heterostructures with a manganese \hat{l} layer. Journal of Experimental and Theoretical Physics, 2011, 112, 317-326.	0.2	10
42	Influence of the magnetic field sweeping rate on magnetic transitions in synthetic ferrimagnets with perpendicular anisotropy. Applied Physics Letters, 2019, 114, .	1.5	10
43	Spin solitons in molecular magnetic materials with the chiral structure. JETP Letters, 2006, 84, 446-450.	0.4	9
44	Relation between the magnetization and the electrical properties of alloy GaSb-MnSb films. Journal of Experimental and Theoretical Physics, 2015, 120, 1012-1018.	0.2	9
45	Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films. Journal of Applied Physics, 2016, 119, 073905.	1.1	9
46	Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films. Superlattices and Microstructures, 2016, 95, 14-23.	1.4	9
47	Effect of the stray field of Fe/Fe3O4 nanoparticles on the surface of the CoFeB thin films. Applied Surface Science, 2020, 527, 146836.	3.1	9
48	Effect of a magnetic field on the electroluminescence intensity of single-crystal ZnS. Physics of the Solid State, 1999, 41, 1783-1785.	0.2	8
49	Magnetic Resonance in a [{Cr(CN)[sub 6]}{Mn(S)-pnH-(H[sub 2]O)}] [middle dot] H[sub 2]O Single-Crystal Molecular Ferrimagnet. Physics of the Solid State, 2005, 47, 2106.	0.2	8
50	Synthesis, structure, and the photomagnetic effect in crystals of 1,3,3,7′-tetramethylspiro[indoline-2,2′-2H-pyrano[3,2-f]quinolinium] tris(oxalato)chromate(III). Russian Chemical Bulletin, 2008, 57, 2495-2505.	0.4	8
51	Photoluminescence response of a quantum well to a change in the magnetic field of the Mn \hat{l} Layer in InGaAs/GaAs heterostructures. Journal of Experimental and Theoretical Physics, 2011, 113, 138-147.	0.2	8
52	Influence of the regime of plastic deformation on the magnetic properties of single-crystal silicon Cz-Si. Physics of the Solid State, 2011, 53, 1547-1553.	0.2	8
53	Magnetic noise as the cause of the spontaneous magnetization reversal of RE–TM–B permanent magnets. Journal of Experimental and Theoretical Physics, 2016, 123, 303-307.	0.2	8
54	Remote microwave monitoring of magnetization switching in CoFeB/Ta/CoFeB spin logic device. Applied Physics Letters, 2017, 110, .	1.5	8

#	Article	IF	Citations
55	Relaxation dynamics of magnetization transitions in synthetic antiferromagnet with perpendicular anisotropy. Journal of Physics Condensed Matter, 2018, 30, 135804.	0.7	8
56	Field-induced single-ion magnet based on a quasi-octahedral Co(⟨scp⟩ii⟨ scp⟩) complex with mixed sulfur–oxygen coordination environment. Dalton Transactions, 2021, 50, 13815-13822.	1.6	8
57	Reversible and irreversible magnetic-field-induced changes in the plastic properties of NaCl crystals. Physics of the Solid State, 1998, 40, 1870-1872.	0.2	7
58	Magnetic field effect on the photoluminescence of an Eu impurity during its aggregation in NaCl crystals. JETP Letters, 2002, 76, 307-311.	0.4	7
59	Ferromagnetic resonance of cobalt nanoparticles in the polymer shell. Physics of the Solid State, 2007, 49, 1507-1513.	0.2	7
60	Synthesis, structure, and NO-donor activity of the paramagnetic complex [Fe2(SC3H5N2)2(NO)4] as a model of nitrosyl [2FE-2S] proteins. Russian Chemical Bulletin, 2007, 56, 28-34.	0.4	7
61	Synthesis and photochemical and magnetic properties of Cr, Mn, Fe, and Co complexes based on the $1-\{(1\hat{a}\in^2,3\hat{a}\in^2,3\hat{a}\in^2\text{-trimethylspiro}[2H-1\text{-benzopyran-2,}2\hat{a}\in^2\text{-indolin}]-8\text{-yl}\}$ methyl $\{pyridinium\ cation.\ Russian\ Chem Bulletin,\ 2008,\ 57,\ 1451-1460.$	nical4	7
62	Spin dynamics in oriented ferromagnetic nanowires Ge0.99Co0.01. Physics of the Solid State, 2008, 50, 1103-1109.	0.2	7
63	Competing ferro- and antiferromagnetic interactions in (manganese,sodium)phenylsilsesquioxane with metal oxide fragments. Russian Chemical Bulletin, 2012, 61, 200-203.	0.4	7
64	Magnetic effects in the oxidation of silicon. JETP Letters, 2012, 96, 102-104.	0.4	7
65	Synthesis particularities, structure and properties of the radical cation salts ï‰-(BEDT-TTF)5M(SCN)6·C2H5OH, M=Mn, Ni. Synthetic Metals, 2014, 195, 75-82.	2.1	7
66	Magnetic properties and spin dynamics of CoFeB–SiO2 multilayer granular heterostructures. Physics of the Solid State, 2016, 58, 1121-1127.	0.2	7
67	Magnetic aftereffects in CoFeB/Ta/CoFeB spin valves of large area. Physical Review B, 2017, 96, .	1.1	7
68	Bistable and Multi-Domain States of \hat{l} ±-Fe/(PrDy)(FeCo)B Ferromagnetic Microwires. Physics of the Solid State, 2019, 61, 2061-2068.	0.2	7
69	Synthesis, crystal molecular structure, and magnetic characteristics of coordination polymers formed by Co(<scp>ii</scp>) diketonates with pentaheterocyclic triphenodioxazines. New Journal of Chemistry, 2021, 45, 304-313.	1.4	7
70	Magnetic resonance in Ge0.99Mn0.01 nanowires. Physics of the Solid State, 2007, 49, 296-301.	0.2	6
71	Kinetics of transformation of Eu2+ dimers in NaCl crystals in a static magnetic field of 15 T. Physics of the Solid State, 2007, 49, 445-448.	0.2	6
72	Microwave magnetoresistance in Ge:Mn nanowires and nanofilms. Science and Technology of Advanced Materials, 2008, 9, 024207.	2.8	6

#	Article	IF	CITATIONS
73	Magnetic properties of single crystals based on photochromic molecules of spiropyrans and chromium oxalates. Physics of the Solid State, 2009, 51, 1663-1670.	0.2	6
74	Thiacalix[4]arene-containing M2Ln2 complexes (M = Mnll, Coll; Ln = Eulll, Prlll): synthesis, structure, and magnetic properties. Russian Chemical Bulletin, 2014, 63, 1465-1474.	0.4	6
7 5	Color of postponed magnetic noise in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi< td=""><td></td><td></td></mml:mi<></mml:msub></mml:mrow></mml:math 		

#	Article	IF	CITATIONS
91	Ferromagnetic resonance of CoFeB/Ta/CoFeB spin valves versus CoFeB film. Thin Solid Films, 2017, 640, 8-13.	0.8	5
92	Effect of Co layer thickness on magnetic relaxation in Pt/Co/Ir/Co/Pt/GaAs spin valve. Journal of Magnetism and Magnetic Materials, 2018, 459, 33-36.	1.0	5
93	Focused magnetization in sharpened rare-earth microwires with four switchable magnetic states. Materials Letters, 2020, 273, 127954.	1.3	5
94	Effect of Fe/Fe ₃ O ₄ Nanoparticles Stray Field on the Microwave Magnetoresistance of a CoFeB/Ta/CoFeB Synthetic Ferrimagnet. ACS Sensors, 2021, 6, 4315-4324.	4.0	5
95	Modulation of interfacial magnetic relaxation timeframes by partially uncoupled exchange bias. Journal Physics D: Applied Physics, 2022, 55, 105001.	1.3	5
96	Thermal hysteresis of magnetization in NiFe/IrMn exchange-biased ferromagnet. Journal Physics D: Applied Physics, 2022, 55, 315002.	1.3	5
97	Radio-frequency paramagnetic resonance spectra, detected from dislocation displacement in NaCl single crystals. Physics of the Solid State, 1999, 41, 1631-1637.	0.2	4
98	Sign reversal of the magnetoplastic effect in C60 single crystals during the sc-fcc phase transition. Physics of the Solid State, 2001, 43, 1389-1392.	0.2	4
99	Structural defects in molecular crystals based on heterospin copper complexes. Physics of the Solid State, 2003, 45, 1465-1470.	0.2	4
100	Photochemical magnetism of crystalline 2,4,6-triazido-3,5-dichloropyridine. High Energy Chemistry, 2007, 41, 33-36.	0.2	4
101	Structure and photochromic and magnetic properties of 1-isopropyl-3,3,5′,6′-tetramethylspiro[indoline-2,2′-2H-pyrano[3,2-b]pyridinium] tris(oxalato)chromate(II Russian Chemical Bulletin, 2008, 57, 2592-2599.	l)0.4	4
102	Generation modes of Eu2+ nonequilibrium dimers and influence of a magnetic field on their reconstruction in NaCl: Eu crystals. Physics of the Solid State, 2011, 53, 786-798.	0.2	4
103	The influence of i-< Mn>-layer's magnetization on polarization of photoluminescence of quantum well in singular and vicinal InGaAs/GaAs/i-< Mn> heterostructures. Journal of Physics: Conference Series, 2012, 345, 012014.	0.3	4
104	Magnetomechanical effect in silicon (Cz-Si) surface layers. Physics of the Solid State, 2012, 54, 1433-1439.	0.2	4
105	Study of Magnetic Behavior of Salts of Cationic Dinitrosyl Iron Complexes with Thiocarbamide and its Derivatives. Applied Magnetic Resonance, 2015, 46, 1383-1393.	0.6	4
106	Giant effect of Sm atoms on time stability of (NdDy)(FeCo)B magnet. European Physical Journal Plus, 2016, 131, 1.	1.2	4
107	Effect of samarium impurity on the relaxation of the magnetization of a (NdDy)(FeCo)B alloy. Physics of the Solid State, 2016, 58, 1582-1586.	0.2	4
108	Statistic regularities of magnetization jumps in K _{0.4} [Cr(CN) ₆][Mn(<i>R</i> /i>/ <i>S</i>)â€pn](<i>R</i> / <i>S</i>)â€pnH _{0.6} ferrimagnet. Physica Status Solidi (B): Basic Research, 2016, 253, 1222-1227.	0.7	4

#	Article	IF	CITATIONS
109	Binuclear cyano-bridged complex derived from [Mn III (salpn)] and [Fe III (CN) 6]: Synthesis, structure and magnetic properties. Inorganic Chemistry Communication, 2016, 64, 27-30.	1.8	4
110	Analysis of Distribution of the Surface Magnetic-Field Gradient in (PrDy)(FeCo)B Rare-Earth Magnets. Journal of Surface Investigation, 2018, 12, 939-943.	0.1	4
111	Softening of the Al-Mg-Si-Fe alloy under magnetostriction of FeAl microinclusions. Journal of Applied Physics, 2019, 125, .	1.1	4
112	Synthesis, properties, and antibacterial activity of a new nitric oxide donor $\hat{a} \in \text{``a nitrosyl iron complex with 5-phenyl-1H-1,2,4-triazole-3-thiol. Russian Chemical Bulletin, 2019, 68, 2225-2231.}$	0.4	4
113	Orientation Dependence of the Magnetic Moments of \hat{l}_{\pm} -Fe(PrDy)(CoFeB) Microwires. Physics of the Solid State, 2020, 62, 648-652.	0.2	4
114	Single ion magnets as magnetic probes of internal field in microparticle array. Journal of Physics and Chemistry of Solids, 2021, 157, 110210.	1.9	4
115	Magnetization Reversal of Ferromagnetic CoFeB Films and CoFeB/Ta/CoFeB Heterostructures in the Stray Field of Fe/Fe3O4 Nanoparticles. Journal of Experimental and Theoretical Physics, 2020, 131, 607-617.	0.2	4
116	Optical quenching of the magnetoplastic effect in NaCl crystals. Physics of the Solid State, 1997, 39, 1232-1234.	0.2	3
117	Magnetosensitive intermediate states of point-defect complexes formed as a result of quenching of NaCl: Eu single crystals. Physics of the Solid State, 2001, 43, 1700-1702.	0.2	3
118	The Influence of a Static Magnetic Field up to 15 T on the Manifestation of the Portevin–Le Chatelier Effect in NaCl : Eu Crystals. Physics of the Solid State, 2005, 47, 1282.	0.2	3
119	Threshold effect of microwave power on ferromagnetic resonance in K0.4[Cr(CN)6][Mn(S)-pn](S)-pnH0.6 single crystals. JETP Letters, 2009, 90, 36-41.	0.4	3
120	Ordered nanowires of photochromic compounds based on spiropyrane and transition metal complexes. Nanotechnologies in Russia, 2009, 4, 828-833.	0.7	3
121	Ferromagnetic semiconductor nanostructures—future spintronics. Russian Journal of General Chemistry, 2010, 80, 591-603.	0.3	3
122	Ferromagnetism, paramagnetism, and thermally induced magnetism in photomagnetic CrIII/MnII and CrIII oxalates with the 7-methyl-3,3-diphenyl-3H-pyrano[3,2-f]quinolinium cation. Russian Chemical Bulletin, 2010, 59, 497-509.	0.4	3
123	Charge order–disorder phase transition detected by EPR in α′-(BEDT-TTF)2IBr2. Physica B: Condensed Matter, 2010, 405, S138-S140.	1.3	3
124	Light controlled magnetoresonant softening of \hat{I}^3 -irradiated KCl:Fe crystals. Journal of Applied Physics, 2010, 108, 064907.	1.1	3
125	Thermally induced paramagnetism of spiropyran salts. Russian Chemical Bulletin, 2011, 60, 1387-1393.	0.4	3
126	Nano- and heterostructures of magnetic semiconductors for spintronics. Russian Chemical Bulletin, 2011, 60, 1051-1057.	0.4	3

#	Article	IF	Citations
127	Photochromic single-molecule magnets based on oxocarboxylate Mn12 clusters and mononitrosyl Ru complexes. Russian Chemical Bulletin, 2011, 60, 1078-1084.	0.4	3
128	ESR Spectra of Charge Carriers in the <i>î±'</i> - and <i>î²</i> - Phases of (BEDT-TTF) ₂ Br ₂ Single Crystals. Solid State Phenomena, 0, 190, 615-618.	0.3	3
129	Two types of charge carrier localization centers in (DOEO)4[HgBr4] \hat{A} · TCE single crystals. Physics of the Solid State, 2012, 54, 2391-2394.	0.2	3
130	Nonadiabatic spin-dependent transitions in iron clusters as a possible cause of the magnetoplastic effect in NaCl: Fe. Physics of the Solid State, 2013, 55, 1446-1449.	0.2	3
131	Synthesis and properties of polyvinylpyrrolidone films containing the photomagnetic chromium (tris)oxalate complex. Russian Chemical Bulletin, 2013, 62, 554-559.	0.4	3
132	Ferromagnetism of nanoclusters of chromium alloys and luminescence quenching in ZnSe/ZnMgSSe/ZnSSe: Cr heterostructures. Physics of the Solid State, 2013, 55, 1870-1877.	0.2	3
133	Kinetics of oxidation of subsurface layers of 29Si-enriched silicon in a magnetic field. Physics of the Solid State, 2014, 56, 1443-1448.	0.2	3
134	Electron and nuclear spin dynamics in plastically deformed silicon crystals enriched in isotope 29Si. Journal of Experimental and Theoretical Physics, 2014, 118, 621-629.	0.2	3
135	The influence of magnetic field and temperature on spin-reorientation transitions in lµ-ln0.043Fe1.957O3nanoparticles. Low Temperature Physics, 2015, 41, 917-921.	0.2	3
136	Isotope-induced generation of paramagnetic defects under plastic deformation of 29Si crystals. Physics of the Solid State, 2015, 57, 100-105.	0.2	3
137	Magnetic properties of CoFeB alloys doped with Dy and Pr. Physics of the Solid State, 2015, 57, 1134-1141.	0.2	3
138	Stochastic jumps of magnetization in [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 molecular magnet. JETP Letters, 2015, 101, 398-401.	0.4	3
139	Effect of stoichiometry of Fe and Co on the temperature stability of the magnetic anisotropy in Pr-Dy-Fe-Co-B alloys. Physics of the Solid State, 2015, 57, 1362-1365.	0.2	3
140	Increase in the coercivity of an ensemble of (DyPr)–(CoFe)–B microparticles during their dispersion in a polymer matrix. Physics of the Solid State, 2016, 58, 1314-1319.	0.2	3
141	Distribution of 28Si, 29Si and 30Si isotopes in subsurface layers of Si:B single crystals under plastic deformation. Chemical Physics Letters, 2016, 643, 39-42.	1.2	3
142	Effect of α-Fe2O3 microbeads on CoFeB/Ta/CoFeB magnetic switching and magnetic instabilities. Superlattices and Microstructures, 2018, 121, 23-32.	1.4	3
143	Magnetic Anisotropy of [(Co41Fe39B20)x(SiO2)100–Âx/Bi2Te3]47 Multilayer Heterostructures. Physics of the Solid State, 2019, 61, 127-133.	0.2	3
144	Exchange Interactions in NiFe/Ta/IrMn Heterostructures under Conditions of Tantalum Deficiency. Physics of the Solid State, 2020, 62, 1033-1038.	0.2	3

#	Article	IF	Citations
145	Synthesis, Structure and Magnetic Properties of Mn ₂ Tb ₂ Tetranuclear Complex with pâ€tertâ€Butylthiacalix[4]arene. Israel Journal of Chemistry, 2020, 60, 600-606.	1.0	3
146	Magneto-Optical Properties and Photoluminescence of (PrDy)(FeCo)B Microwires. Physics of the Solid State, 2021, 63, 556-565.	0.2	3
147	Anionic dinitrosyl iron complexes – new nitric oxide donors with selective toxicity to human glioblastoma cells. Journal of Molecular Structure, 2022, 1266, 133506.	1.8	3
148	Localization of conduction-band electrons in \hat{l}^2 $\hat{a} \in \mathbb{R}^3$ -(BEDT-TTF) $<$ sub> $4 <$	0.2	2
149	Imprinting magnetic memory cells in molecular based NiL2(C2H5OH)2heterospin crystals. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R47-R49.	0.8	2
150	Localization of conduction electrons and the magnetic properties of the molecular metals $\hat{l}^2\hat{a}\in^3$ -(BEDT-TTF)4NH4[M(C2O4)3] $\hat{A}\cdot$ DMF (M = Cr3+, Fe3+). Journal of Experimental and Theoretical Physics, 2006, 102, 121-130.	0.2	2
151	Magnetic properties of the tetranitrosyl-iron complex Fe2(SC3H5N2)2(NO)4. Physics of the Solid State, 2007, 49, 1723-1730.	0.2	2
152	Spin dynamics and ferromagnetic resonance in an $[Mn\{(R/S)-pn\}]2[Mn\{(R/S)-pn\}2(H2O)][Cr(CN)6]2$ molecular magnetic. Russian Journal of Physical Chemistry B, 2007, 1, 254-258.	0.2	2
153	Microwave magnetoresistance and electron spin resonance in Ge:Mn thin films and nanowires. Journal of Experimental and Theoretical Physics, 2008, 107, 113.	0.2	2
154	Spin-orbit interaction of charge carriers with impurities in aligned Ge0.99Me0.01 (Me = Mn, Cr, Co, Fe) nanowires. Semiconductors, 2009, 43, 896-900.	0.2	2
155	Electron spin resonance in oriented nanowires Ge0.99Cr0.01. Physics of the Solid State, 2009, 51, 1709-1715.	0.2	2
156	Effect of annealing on the microwave magnetoresistance of thin Ge0.96Mn0.04 films. Semiconductors, 2010, 44, 303-308.	0.2	2
157	Magnetic properties of ordered nanowires of the quasi-two-dimensional antiferromagnet SpFeMn(C2O4)3. Physics of the Solid State, 2010, 52, 2135-2141.	0.2	2
158	Low-temperature phase transition in α′-(BEDT-TTF)2lBr2 single crystals detected by the ESR method. Physics of the Solid State, 2011, 53, 1269-1273.	0.2	2
159	Effect of chirality on the dynamics of domain walls in the molecular ferrimagnet [MnII(HL-pn)(H2O)][MnIII(CN)6] · 2H2O. Physics of the Solid State, 2012, 54, 754-760.	0.2	2
160	Effect of temperature conditions of ion implantation on percolation ferromagnetism in Ge0.98Mn0.02 thin films. Physics of the Solid State, 2012, 54, 1370-1373.	0.2	2
161	Influence of dehydration on the electron spin resonance in the Cu3[W(CN)8]2(Pyrimidine)2 ·8H2O molecular magnet. Physics of the Solid State, 2013, 55, 990-994.	0.2	2
162	Anomalous magnetization dynamics near the spin-reorientation transition temperature in $\hat{l}\mu$ -In0.24Fe1.76O3 nanowires. Low Temperature Physics, 2015, 41, 20-24.	0.2	2

#	Article	IF	CITATIONS
163	Epsilon-phase iron(III) oxide nanowires for a magnetic-resonance spin-current source. Journal of Surface Investigation, 2015, 9, 442-445.	0.1	2
164	Spin Filtering on the MnSb Cluster Interface in GaSbMn Thin Films. Solid State Phenomena, 2015, 233-234, 643-647.	0.3	2
165	Competition of Peierls relief and structural defects in the damping of domain walls in [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 ferrimagnet. Low Temperature Physics, 2015, 41, 29-33.	0.2	2
166	Transitions between quantum states of the spin-soliton structure in molecular magnets $[Mn\{(R/S)-pn\}]2[Mn\{(R/S)-pn\}2(H2O)][Cr(CN)6]2$. Physics of the Solid State, 2015, 57, 1519-1523.	0.2	2
167	Competition of magnetization mechanisms in (NdDy)(FeCo)B alloys, doped with samarium. Low Temperature Physics, 2016, 42, 45-49.	0.2	2
168	Effect of copper concentration on atomic site occupation by Fe ions and magnetic properties of $(PrDy)\hat{a}\in (FeCo)\hat{a}\in B$ alloys. Physics of the Solid State, 2016, 58, 1135-1142.	0.2	2
169	Ultra low frequency Barkhausen noise versus domain structure and reversal magnetization in sintered (NdDy)(FeCo)B magnets. Journal of Applied Physics, 2018, 124, 163906.	1.1	2
170	Strong magnetocaloric effect induced by spin reorientation transitions in epitaxial Ho thin films. Physical Review B, 2020, 102, .	1.1	2
171	Spin Reorientation Transition in $\hat{l}\pm$ -Fe Microwires with an Amorphous PrDyCoFeB Shell. Physics of the Solid State, 2020, 62, 1333-1337.	0.2	2
172	Sharp Change in the Exchange Bias and the Magnetic Anisotropy Symmetry at a Subthreshold Interlayer Copper Content in NiFe/Cu/IrMn Heterostructures. Journal of Experimental and Theoretical Physics, 2021, 132, 852-864.	0.2	2
173	Laser assisted rapid local crystallization in amorphous PrDyFeCoB microwires. Materials Letters, 2021, 301, 130291.	1.3	2
174	Dzyaloshinskii-Moriya interaction probed by magnetization reversal in bilayer Pt/Co/Ir/Co/Pt synthetic ferrimagnets. Physical Review B, 2021, 104, .	1.1	2
175	The Morphology and Mechanical Properties of PrDyFeCoB Microwires. Physics of the Solid State, 2020, 62, 2272-2279.	0.2	2
176	Dzyaloshinskii–Moriya interaction determined from spin wave nonreciprocity and magnetic bubble asymmetry in Pt/Co/Ir/Co/Pt synthetic ferrimagnets. Journal of Physics Condensed Matter, 2022, 34, 085803.	0.7	2
177	Effect of a static magnetic field on overcoming short-range obstacles by dislocations in LiF single crystals. Physics of the Solid State, 1997, 39, 430-431.	0.2	1
178	Thermodynamic and kinetic aspects of the weakening of ionic crystals by pulsed magnetic fields. Physics of the Solid State, 1997, 39, 1803-1805.	0.2	1
179	Anisotropy of the optical suppression of the magnetoplastic effect in NaCl single crystals. Crystallography Reports, 2000, 45, 148-149.	0.1	1
180	A correlation between manifestations of the magnetoplastic effect and changes in the electron paramagnetic resonance spectra after quenching of NaCl: Eu single crystals. Physics of the Solid State, 2003, 45, 94-97.	0.2	1

#	Article	IF	CITATIONS
181	Magnetosensitive defects generated during plastic straining of NaCl:Eu crystals. Journal of Experimental and Theoretical Physics, 2003, 97, 754-762.	0.2	1
182	Spin-frustrated antiferromagnets based on BEDT-TTF and manganese dicyanamide complexes. Physics of the Solid State, 2007, 49, 905-911.	0.2	1
183	Photostimulated electron transfer and its action on paramagnetism of Sp3Cr(C2O4)3 single crystals. Journal of Experimental and Theoretical Physics, 2009, 109, 667-675.	0.2	1
184	GaAs:Mn Layer Magnetization in GaAs-Based Heterostructures Containing InGaAs Quantum Well. Solid State Phenomena, 2012, 190, 550-553.	0.3	1
185	FMR determination of the period of an incommensurate magnetic structure in chiral organometallic crystals. Physics of the Solid State, 2012, 54, 1358-1362.	0.2	1
186	Influence of zeolite water on paramagnetic and ferromagnetic resonances in the Co2[Nb(CN)8] \hat{A} · 8H2O molecular magnet. Physics of the Solid State, 2013, 55, 1663-1667.	0.2	1
187	Competition of two mechanisms of retardation of domain walls in the molecular ferrimagnet		

#	Article	IF	CITATIONS
199	"Magnetic Memory―in Plasticity of an Aluminum Alloy with Iron Inclusions. Physics of the Solid State, 2019, 61, 1023-1029.	0.2	1
200	Surface engineering of magnetic and mechanical properties of Ta/Pt/GdFeCo/IrMn/Pt heterostructures by femtosecond laser pulses. Applied Surface Science, 2019, 493, 470-477.	3.1	1
201	Time resolved FORC analysis and magnetic anisotropy in K _{0.4} [Cr(CN) ₆][Mn(S)-pn] (S)-pnH _{0.6} chiral molecular magnets. Journal of Physics Condensed Matter, 2019, 31, 085801.	0.7	1
202	Spin Relaxation in Single-Ion Magnets under the Slowing Down Effect Produced by the Stray Field of Ferromagnetic Microparticles. JETP Letters, 2021, 113, 794-800.	0.4	1
203	A Decrease in the Exchange Bias Caused by an Increase in the Effective Thickness of the Copper Layer in the NiFe/Cu/IrMn Heterostructures. Physics of the Solid State, 2020, 62, 1991-1997.	0.2	1
204	Magnetic Properties of a Ni Nanonet Grown in Superfluid Helium under Laser Irradiation. Magnetochemistry, 2021, 7, 139.	1.0	1
205	Oscillations of EPR Signals Accompanying Belousov–Zhabotinsky Reaction. Magnetochemistry, 2021, 7, 2.	1.0	1
206	Conditions for the Occurrence of Spontaneous Oscillating Magnetic Relaxation in Synthetic Pt/Co/Ir/Co/Pt Ferrimagnets. Physics of the Solid State, 2020, 62, 458-463.	0.2	1
207	Effect of Fe ₃ O ₄ Nanoparticles on CoFeB/Ta/CoFeB Spin-Valve Magnetoresistance Probed by Microwave Absorption. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	1
208	Exchange Bias at the Ferro–Ferrimagnet Interface in PrDyCoFeB/α-Fe Microwires. Physics of the Solid State, 2021, 63, 1675-1679.	0.2	1
209	The Increase in Electrical Conductivity and the Appearance of Lipid Pores Induced by Magnetic Nanoparticles CoFe2O4 in Bilayer Lipid Membranes. Russian Journal of Electrochemistry, 2022, 58, 321-328.	0.3	1
210	Magnetosensitive reactions in ionic crystals during their plastic deformation. Russian Chemical Bulletin, 1997, 46, 708-713.	0.4	0
211	Influence of light and magnetic field on dislocation mobility in ionic crystals. Russian Physics Journal, 1998, 41, 637-641.	0.2	O
212	Aging-induced shift of the optical quenching maximum of the magnetoplastic effect in NaCl crystals. Crystallography Reports, 2000, 45, 676-677.	0.1	0
213	The role of thermally activated processes in the formation of magnetosensitive point-defect complexes in NaCl: Eu single crystals. Physics of the Solid State, 2003, 45, 270-275.	0.2	0
214	The magnetic properties of Eu nanoclusters formed in NaCl crystals during plastic deformation and aggregation. Journal of Experimental and Theoretical Physics, 2005, 100, 66-76.	0.2	0
215	Microwave response to a magnetic phase transition in a molecular magnet based on [Mn12O12(MeCO2)16(H2O)4] clusters and tetramethyltetrathiafulvalene molecules. Physics of the Solid State, 2007, 49, 997-1003.	0.2	0
216	Effect of Mn ²⁺ spin frustrations on spin dynamics of charge carriers in (BEDTâ€₹TF) ₂ Mn[N(CN) ₂] ₃ crystals. Physica Status Solidi (B): Basic Research, 2008, 245, 1165-1169.	0.7	0

#	Article	IF	CITATIONS
217			

#	Article	IF	CITATIONS
235	29Si nuclear spin relaxation in microcrystals of plastically deformed Si: B samples. Physics of the Solid State, 2016, 58, 240-246.	0.2	O
236	High-temperature spin dynamics studied by solid-state nuclear resonance and electron paramagnetic resonance in 29Si:B crystals. Journal of Materials Science, 2016, 51, 1838-1844.	1.7	0
237	Discrete energy spectrum of nonlinear spin ensembles in the ferrimagnet K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6. Physics of the Solid State, 2017, 59, 70-75.	0.2	0
238	Antiferromagnetic inclusions in organic semiconductor (DOEO)4[HgBr4] \hat{A} · TCE. Journal of Surface Investigation, 2017, 11, 114-119.	0.1	0
239	Delayed demagnetization jumps in (NdDy)(FeCo)B magnets in a steady-state magnetic field. Physics of the Solid State, 2017, 59, 2279-2285.	0.2	0
240	Microwave response to the magnetization switching of CoFeB/Ta/CoFeB spin valves and CoFeB films. Physics of the Solid State, 2017, 59, 1947-1951.	0.2	0
241	Continuous and jumpwise reversal magnetization in [Mn(II)(HL)(H2O)][Mn(III)(CN)6]·2H2O molecular ferrimagnet. Low Temperature Physics, 2017, 43, 1185-1189.	0.2	0
242	Competition between domain walls and the reverse magnetization in the magnetic relaxation of a Pt/Co/lr/Co/Pt spin switcher. Physics of the Solid State, 2018, 60, 75-78.	0.2	0
243	Magnetocrystalline Anisotropy of (PrDy)(FeCo)B Sintered Magnets. Physics of the Solid State, 2018, 60, 2486-2490.	0.2	0
244	Stabilization of dinitrosyl iron complexes under matrix isolation conditions: solvent and polymer effects on the synthesis of composites based on poly(methyl methacrylate) and iron complexes [Fe2($1\frac{1}{4}$ -NCS-R)2(NO)4]. Russian Chemical Bulletin, 2018, 67, 1631-1638.	0.4	0
245	Effect of magnetic relaxation on magnetization reversal of K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6 molecular ferrimagnet. Low Temperature Physics, 2018, 44, 1149-1152.	0.2	0
246	Increase in the Boron Content in Pr–Dy–Fe–Co–B Materials by Solid-Phase Alloying. Russian Metallurgy (Metally), 2019, 2019, 727-732.	0.1	0
247	Cause of the Failure of Sintered Blanks of Ring Nd–Dy–Fe–Co–B Magnets with a Radial Texture. Russian Metallurgy (Metally), 2019, 2019, 733-736.	0.1	0
248	Time and Temperature Dependences of the Irreversible Magnetization Losses of Sintered Pr–Dy–Fe–Co–B Magnets. Russian Metallurgy (Metally), 2019, 2019, 916-920.	0.1	0
249	Effect of Texture on the Width of Domains in Sintered Magnets (PrDy)(FeCo)B and (NdDy)(FeCo)B. Physics of the Solid State, 2019, 61, 2055-2060.	0.2	0
250	Limitation of the Allowed Coercive Force Caused by the Scattering Field of Magnet. Technical Physics, 2019, 64, 994-997.	0.2	0
251	Coercive Force of (Pr, Dy)–(Fe, Co)–B Sintered Materials with a Low Rare-Earth Metal Content. Russian Metallurgy (Metally), 2019, 2019, 257-260.	0.1	0
252	Magnetic Characteristics of Sintered (Pr,Dy)–(Fe,Co,Cu)–B Materials with Various Copper Contents as Functions of the Annealing Temperature. Russian Metallurgy (Metally), 2019, 2019, 536-541.	0.1	0

#	Article	IF	CITATIONS
253	Interaction of Magnetization Centers of Different Signs as the Cause of the Nonmonotonic Field Dependence of the Domain Wall Velocity in Synthetic Pt/Co/lr/Co/Pt Ferrimagnets. Journal of Experimental and Theoretical Physics, 2019, 129, 998-1004.	0.2	0
254	Effect of the Conditions of Annealing of a Pr–Dy–Fe–Co–B Alloy on the Properties of the Sintered Magnets. Russian Metallurgy (Metally), 2020, 2020, 220-224.	0.1	0
255	Possible Contributions of Phases to Magnetization of the Ndâ^'Dyâ^'Feâ^'Coâ^'B Sintered Materials and Temperature Dependence of the Magnetization. Technical Physics, 2020, 65, 216-220.	0.2	0
256	Spontaneous Magnetization Loss Dynamics of (Pr, Dy)–(Fe, Co)–B Magnets. Technical Physics, 2020, 65, 377-381.	0.2	0
257	Change in the Magnetization of Sintered Pr–Dy–Fe–Co–B Magnets in Time. Russian Metallurgy (Metally), 2020, 2020, 66-70.	0.1	0
258	Criterion of non monotonic magnetic relaxation in Pt/Co/Ir/Co/Pt synthetic ferrimagnet with perpendicular anisotropy. Superlattices and Microstructures, 2020, 142, 106509.	1.4	0
259	Radial Domains in DyPr–FeCo–B Microwires. Physics of the Solid State, 2021, 63, 266-271.	0.2	0
260	Chemical Design of DyPrFeCoB-Alloy-Based Microtweezers. Journal of Surface Investigation, 2021, 15, 292-297.	0.1	0
261	Structure and Magnetic Properties of (Pr,Dy)–(Fe,Co)–B Alloys Prepared by Rapid and Slow Melt Cooling. Russian Metallurgy (Metally), 2021, 2021, 898-904.	0.1	0
262	The effect of Dzyaloshinskii–Moriya interaction on direct and backward transition between magnetic states of Pt/Co/lr/Co/Pr synthetic ferrimagnet. Journal of Advanced Materials and Technologies, 2021, 6, 167-178.	0.2	0
263	Generation of Nonequilibrium Nuclei of Magnetization in a Rapidly Increasing Magnetic Field in Pt/Co/Ir/Co/Pt Synthetic Ferrimagnets. Physics of the Solid State, 2020, 62, 2070-2076.	0.2	0
264	Change in blocking temperature of nanoparticle array deposited on magnetoresistive sensor. Journal of Magnetism and Magnetic Materials, 2022, 551, 169096.	1.0	0
265	Local Crystallization in Amorphous Microwires of PrDyFeCoB Induced by a Single Laser Pulse. Physics of the Solid State, 2021, 63, 1218-1227.	0.2	0
266	Magnetic Anisotropy of Microwires and Domain Structure of Microstripes of PrDyCoFeB. Physics of the Solid State, 2021, 63, 1211-1217.	0.2	0
267	Spin-Wave Excitations in NiFe/Cu/IrMn Heterostructures with a Variable Thickness Copper Spacer. Journal of Experimental and Theoretical Physics, 2022, 134, 204-210.	0.2	0