Miriam Naomi Jacobs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4721341/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Interrogation of Cell Transformation In Vitro: The Transformics Assay as an Exemplar of Oncotransformation. International Journal of Molecular Sciences, 2022, 23, 7603.	1.8	2
2	Highlighting the gaps in hazard and risk assessment of unregulated Endocrine Active Substances in surface waters: retinoids as a European case study. Environmental Sciences Europe, 2021, 33, .	2.6	10
3	Characterisation and validation of an in vitro transactivation assay based on the 22Rv1/MMTV_GR-KO cell line to detect human androgen receptor agonists and antagonists. Food and Chemical Toxicology, 2021, 152, 112206.	1.8	5
4	Dying for change: A roadmap to refine the fish acute toxicity test after 40 years of applying a lethal endpoint. Ecotoxicology and Environmental Safety, 2021, 223, 112585.	2.9	13
5	Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. International Journal of Molecular Sciences, 2021, 22, 10969.	1.8	14
6	A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals. Regulatory Toxicology and Pharmacology, 2020, 118, 104789.	1.3	21
7	The Secretive Liaison of Particulate Matter and SARS-CoV-2. A Hypothesis and Theory Investigation. Frontiers in Genetics, 2020, 11, 579964.	1.1	13
8	Building confidence in skin sensitisation potency assessment using new approach methodologies: report of the 3rd EPAA Partners Forum, Brussels, 28th October 2019. Regulatory Toxicology and Pharmacology, 2020, 117, 104767.	1.3	4
9	Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Archives of Toxicology, 2020, 94, 2899-2923.	1.9	72
10	Environmental pollution and COVID-19: the molecular terms and predominant disease outcomes of their sweetheart agreement. Epidemiologia E Prevenzione, 2020, 44, 169-182.	1.1	1
11	Hazard assessment of air pollutants: The transforming ability of complex pollutant mixtures in the Bhas 42 cell model. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 623-633.	0.9	4
12	Addressing potential ethical issues regarding the supply of human-derived products or reagents in in vitro OECD Test Guidelines. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 163-176.	0.9	4
13	The transformics assay: first steps for the development of an integrated approach to investigate the malignant cell transformation in vitro. Carcinogenesis, 2018, 39, 955-967.	1.3	27
14	Marked for Life: Epigenetic Effects of Endocrine Disrupting Chemicals. Annual Review of Environment and Resources, 2017, 42, 105-160.	5.6	52
15	Biometrical evaluation of the performance of the revised OECD Test Guideline 402 for assessing acute dermal toxicity. Regulatory Toxicology and Pharmacology, 2017, 89, 26-39.	1.3	11
16	Uncertainties of testing methods: What do we (want to) know about carcinogenicity?. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 235-252.	0.9	29
17	Environmentally induced epigenetic toxicity: potential public health concerns. Critical Reviews in Toxicology, 2016, 46, 676-700.	1.9	77
18	International regulatory needs for development ofan IATA for non-genotoxic carcinogenic chemical substances. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 359-392.	0.9	52

Miriam Naomi Jacobs

#	Article	IF	CITATIONS
19	In vitro metabolism and bioavailability tests for endocrine active substances: What is needed next for regulatory purposes?. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 331-351.	0.9	36
20	In vitro and in vivo testing methods of epigenomic endpoints for evaluating endocrine disruptors. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 445-471.	0.9	52
21	Use of computational tools in the field of food safety. Regulatory Toxicology and Pharmacology, 2011, 60, 354-362.	1.3	14
22	Physiologically-based Kinetic Modelling (PBK Modelling): Meeting the 3Rs Agenda. ATLA Alternatives To Laboratory Animals, 2007, 35, 661-671.	0.7	59
23	Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicology and Applied Pharmacology, 2005, 209, 123-133.	1.3	154
24	Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discovery Today, 2004, 9, 530-537.	3.2	159
25	In silico tools to aid risk assessment of endocrine disrupting chemicals. Toxicology, 2004, 205, 43-53.	2.0	71
26	Time Trend Investigation of PCBs, PBDEs, and Organochlorine Pesticides in Selected na ²³ Polyunsaturated Fatty Acid Rich Dietary Fish Oil and Vegetable Oil Supplements; Nutritional Relevance for Human Essential na ²³ Fatty Acid Requirements. Journal of Agricultural and Food Chemistry, 2004, 52, 1780-1788.	2.4	98
27	Homology modelling of the nuclear receptors: human oestrogen receptorl ² (hERI ²), the human pregnane-X-receptor (PXR), the Ah receptor (AhR) and the constitutive androstane receptor (CAR) ligand binding domains from the human oestrogen receptor î± (hERî±) crystal structure, and the human peroxisome proliferator activated receptor î± (PPARî±) ligand binding domain from the human PPARî ³	1.2	59
28	Steroid hormone receptors and dietary ligands: a selected review. Proceedings of the Nutrition Society, 2002, 61, 105-122.	0.4	76
29	Investigation of Selected Persistent Organic Pollutants in Farmed Atlantic Salmon (Salmo salar), Salmon Aquaculture Feed, and Fish Oil Components of the Feed. Environmental Science & Technology, 2002, 36, 2797-2805.	4.6	252
30	Molecular modelling of the peroxisome proliferator-activated receptor α (PPARα) from human, rat and mouse, based on homology with the human PPARγ crystal structure. Toxicology in Vitro, 2002, 16, 275-280.	1.1	14
31	Quantitative structure–activity relationships for inducers of cytochromes P450 and nuclear receptor ligands involved in P450 regulation within the CYP1, CYP2, CYP3 and CYP4 families. Toxicology, 2002, 176, 51-57.	2.0	46
32	Organochlorine residues in fish oil dietary supplements: Comparison with industrial grade oils. Chemosphere, 1998, 37, 1709-1721.	4.2	64
33	Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. Frontiers in Toxicology, 0, 4, .	1.6	3