
Xian-ning Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4721286/publications.pdf Version: 2024-02-01

XIAN-NUNC LI

#	Article	lF	CITATIONS
1	Effects of carbon source on electricity generation and PAH removal in aquaculture sediment microbial fuel cells. Environmental Technology (United Kingdom), 2022, 43, 4066-4077.	1.2	5
2	Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. Journal of Environmental Management, 2022, 311, 114783.	3.8	11
3	The use of a self-generated current in a coupled MFC-AnMBR system to alleviate membrane fouling. Chemical Engineering Journal, 2022, 442, 136090.	6.6	9
4	Efficient use of electrons in a double-anode microbial fuel cell–biofilm electrode reactor self-powered coupled system for degradation of azo dyes. Chemosphere, 2022, 302, 134760.	4.2	4
5	Simultaneous copper migration and removal from soil and water using a three-chamber microbial fuel cell. Environmental Technology (United Kingdom), 2021, 42, 4519-4527.	1.2	5
6	Limitation of voltage reversal in the degradation of azo dye by a stacked double-anode microbial fuel cell and characterization of the microbial community structure. Science of the Total Environment, 2021, 754, 142454.	3.9	18
7	Influence mechanism of heavy metal removal under microcurrent action. Separation and Purification Technology, 2021, 263, 118351.	3.9	2
8	Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal. Environmental Research, 2021, 198, 111217.	3.7	11
9	Aerobic Denitrification Is Enhanced Using Biocathode of SMFC in Low-Organic Matter Wastewater. Water (Switzerland), 2021, 13, 3512.	1.2	5
10	The synergistic effect of biophoto anode for the enhancement of current generation and degradation. Environmental Technology (United Kingdom), 2020, 41, 3420-3430.	1.2	13
11	Relationship between bioelectrochemical copper migration, reduction and electricity in a three-chamber microbial fuel cell. Chemosphere, 2020, 241, 125097.	4.2	28
12	Effect of soil type on heavy metals removal in bioelectrochemical system. Bioelectrochemistry, 2020, 136, 107596.	2.4	19
13	Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell. Ecotoxicology and Environmental Safety, 2020, 192, 110314.	2.9	52
14	Preparation of needle-like Fe3O4/Fe2O3 nanorods on stainless steel plates to form inexpensive, high-performance bioanodes. Journal of Electroanalytical Chemistry, 2019, 855, 113497.	1.9	12
15	The Azo Dye Degradation and Differences Between the Two Anodes on the Microbial Community in a Double-Anode Microbial Fuel Cell. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	8
16	Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode. Journal of Power Sources, 2019, 415, 145-153.	4.0	44
17	Characterization of electricity generation and microbial community structure over long-term operation of a microbial fuel cell. Bioresource Technology, 2019, 285, 121395.	4.8	30
18	Enhanced degradation of bisphenol A and ibuprofen by an up-flow microbial fuel cell-coupled constructed wetland and analysis of bacterial community structure. Chemosphere, 2019, 217, 599-608.	4.2	75

XIAN-NING LI

#	Article	IF	CITATIONS
19	Azo dye as part of co-substrate in a biofilm electrode reactor–microbial fuel cell coupled system and an analysis of the relevant microorganisms. Chemosphere, 2019, 216, 742-748.	4.2	43
20	Biorefractory wastewater degradation in the cathode of constructed wetland-microbial fuel cell and the study of the electrode performance. International Biodeterioration and Biodegradation, 2018, 129, 1-9.	1.9	46
21	Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms. Ecotoxicology and Environmental Safety, 2018, 147, 735-741.	2.9	39
22	Azo dye degradation pathway and bacterial community structure in biofilm electrode reactors. Chemosphere, 2018, 208, 219-225.	4.2	53
23	Electrode and azo dye decolorization performance in microbial-fuel-cell-coupled constructed wetlands with different electrode size during long-term wastewater treatment. Bioresource Technology, 2017, 238, 450-460.	4.8	62
24	Bioelectrochemical approach for control of methane emission from wetlands. Bioresource Technology, 2017, 241, 812-820.	4.8	58
25	Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system. Ecotoxicology and Environmental Safety, 2017, 139, 172-178.	2.9	25
26	The degradation of azo dye with different cathode and anode structures in biofilm electrode reactors. RSC Advances, 2017, 7, 16854-16860.	1.7	7
27	Feasibility study of simultaneous azo dye decolorization and bioelectricity generation by microbial fuel cell-coupled constructed wetland: substrate effects. RSC Advances, 2017, 7, 16542-16552.	1.7	36
28	Two-Phase Anaerobic Digester Combined with Solar Thermal and Phase Change Thermal Storage System in Winter. Energy & Fuels, 2017, 31, 4003-4012.	2.5	9
29	Enhanced degradation of azo dye by a stacked microbial fuel cell-biofilm electrode reactor coupled system. Bioresource Technology, 2017, 227, 273-278.	4.8	49
30	Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater. Bioresource Technology, 2017, 244, 182-191.	4.8	43
31	Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor. Chemosphere, 2017, 186, 287-294.	4.2	29
32	Enhanced Degradation of Atrazine by Soil Microbial Fuel Cells and Analysis of Bacterial Community Structure. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	16
33	Simultaneous degradation of refractory organic pesticide and bioelectricity generation in a soil microbial fuel cell with different conditions. Environmental Technology (United Kingdom), 2017, 38, 1043-1050.	1.2	19
34	Effects of electrode gap and wastewater condition on the performance of microbial fuel cell coupled constructed wetland. Environmental Technology (United Kingdom), 2017, 38, 1051-1060.	1.2	33
35	Effects of Electrical Stimulation on the Degradation of Azo Dye in Three-Dimensional Biofilm Electrode Reactors. Water (Switzerland), 2017, 9, 301.	1.2	6
36	Improved biogas production and biodegradation of oilseed rape straw by using kitchen waste and duck droppings as co-substrates in two-phase anaerobic digestion. PLoS ONE, 2017, 12, e0182361.	1.1	15

XIAN-NING LI

#	Article	IF	CITATIONS
37	A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products. Ecological Engineering, 2016, 94, 455-463.	1.6	85
38	New process for copper migration by bioelectricity generation in soil microbial fuel cells. Environmental Science and Pollution Research, 2016, 23, 13147-13154.	2.7	50
39	The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community. Environmental Technology (United Kingdom), 2016, 37, 1683-1692.	1.2	34
40	Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors and Bioelectronics, 2015, 68, 135-141.	5.3	211
41	Synthesis of polyacrylamide/modified silica composite hydrogels for synergistic complexation of heavy metal ions. Desalination and Water Treatment, 2015, 53, 230-237.	1.0	8
42	Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell. Bioresource Technology, 2015, 189, 87-93.	4.8	164
43	Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors. Biochemical Engineering Journal, 2015, 93, 294-302.	1.8	76
44	Analysis on the formation condition of the algae-induced odorous black water agglomerate. Saudi Journal of Biological Sciences, 2014, 21, 597-604.	1.8	65
45	Ion-imprinted poly(2-acrylamido-2-methyl-1-propansulfonic acid)/modified silica composite hydrogel for selective and enhanced adsorption of Pb(II) ions. Desalination and Water Treatment, 2014, 52, 274-282.	1.0	7
46	Role of biologic components in a novel floating-bed combining Ipomoea aquatic, Corbicula fluminea and biofilm carrier media. Frontiers of Environmental Science and Engineering, 2014, 8, 215-225.	3.3	18
47	Feedback of threshold via estimating sources and composition of sedimentary organic matter across trophic gradients in freshwater lakes. Science of the Total Environment, 2014, 500-501, 373-382.	3.9	17
48	Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland — Microbial fuel cell systems. Bioresource Technology, 2014, 166, 575-583.	4.8	183
49	Ion-Imprinted Composite Hydrogels with Excellent Mechanical Strength for Selective and Fast Removal of Cu ²⁺ . Industrial & Engineering Chemistry Research, 2013, 52, 572-577.	1.8	28
50	Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 2013, 144, 165-171.	4.8	267
51	Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System. International Journal of Photoenergy, 2013, 2013, 1-10.	1.4	101
52	Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with <i>Eisenia foetida</i> . Desalination and Water Treatment, 2013, 51, 7460-7468.	1.0	13
53	Elimination of estrogens and estrogenic activity from sewage treatment works effluents in subsurface and surface flow constructed wetlands. International Journal of Environmental Analytical Chemistry, 2011, 91, 600-614.	1.8	8