Marina Pizzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4721127/publications.pdf Version: 2024-02-01

Μλαινίλ Ρισσι

#	Article	IF	CITATIONS
1	Synapsin III gene silencing redeems alpha-synuclein transgenic mice from Parkinson's disease-like phenotype. Molecular Therapy, 2022, 30, 1465-1483.	8.2	9
2	Beneficial and Sexually Dimorphic Response to Combined HDAC Inhibitor Valproate and AMPK/SIRT1 Pathway Activator Resveratrol in the Treatment of ALS Mice. International Journal of Molecular Sciences, 2022, 23, 1047.	4.1	8
3	Age-Dependent Neuropsychiatric Symptoms in the NF-κB/c-Rel Knockout Mouse Model of Parkinson's Disease. Frontiers in Behavioral Neuroscience, 2022, 16, 831664.	2.0	2
4	Alpha-Synuclein in the Regulation of Brain Endothelial and Perivascular Cells: Gaps and Future Perspectives. Frontiers in Immunology, 2021, 12, 611761.	4.8	22
5	Plasma NfL, clinical subtypes and motor progression in Parkinson's disease. Parkinsonism and Related Disorders, 2021, 87, 41-47.	2.2	26
6	An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2021, 130, 33-60.	6.1	22
7	From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients, 2021, 13, 85.	4.1	25
8	The good and bad of therapeutic strategies that directly target αâ€synuclein. IUBMB Life, 2020, 72, 590-600.	3.4	6
9	Neuroprotective epi-drugs quench the inflammatory response and microglial/macrophage activation in a mouse model of permanent brain ischemia. Journal of Neuroinflammation, 2020, 17, 361.	7.2	36
10	Raman Probes for <i>In Situ</i> Molecular Analyses of Peripheral Nerve Myelination. ACS Chemical Neuroscience, 2020, 11, 2327-2339.	3.5	5
11	Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiology of Disease, 2020, 138, 104789.	4.4	19
12	Nuclear Factor-κB Dysregulation and α-Synuclein Pathology: Critical Interplay in the Pathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 68.	3.4	56
13	MicroRNA‑34a‑5p expression in the plasma and inÂits extracellular vesicle fractions in subjects with Parkinson's disease: An exploratory study. International Journal of Molecular Medicine, 2020, 47, 533-546.	4.0	49
14	NF-κB/c-Rel deficiency causes Parkinson's disease-like prodromal symptoms and progressive pathology in mice. Translational Neurodegeneration, 2019, 8, 16.	8.0	21
15	The Role of Mast Cells in Stroke. Cells, 2019, 8, 437.	4.1	41
16	A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia. Nutrients, 2019, 11, 345.	4.1	21
17	Synapsin III is a key component of αâ€synuclein fibrils in Lewy bodies of PD brains. Brain Pathology, 2018, 28, 875-888.	4.1	37
18	Acetylation state of RelA modulated by epigenetic drugs prolongs survival and induces a neuroprotective effect on ALS murine model. Scientific Reports, 2018, 8, 12875.	3.3	30

Marina Pizzi

#	Article	IF	CITATIONS
19	Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke. International Journal of Molecular Sciences, 2018, 19, 172.	4.1	26
20	Synapsin III deficiency hampers α-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson's disease. Acta Neuropathologica, 2018, 136, 621-639.	7.7	53
21	Dopamine Transporter/α-Synuclein Complexes Are Altered in the Post Mortem Caudate Putamen of Parkinson's Disease: An In Situ Proximity Ligation Assay Study. International Journal of Molecular Sciences, 2018, 19, 1611.	4.1	20
22	Mitochondria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson's Disease?. Genes, 2017, 8, 377.	2.4	48
23	Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation. International Journal of Molecular Sciences, 2017, 18, 184.	4.1	6
24	Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. Frontiers in Aging Neuroscience, 2017, 9, 229.	3.4	12
25	The End Is the Beginning: Parkinson's Disease in the Light of Brain Imaging. Frontiers in Aging Neuroscience, 2017, 9, 330.	3.4	26
26	The Contribution of <i>α</i> -Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plasticity, 2017, 2017, 1-15.	2.2	70
27	Review: Parkinson's disease: from synaptic loss to connectome dysfunction. Neuropathology and Applied Neurobiology, 2016, 42, 77-94.	3.2	163
28	PEA and luteolin synergistically reduce mast cell-mediated toxicity and elicit neuroprotection in cell-based models of brain ischemia. Brain Research, 2016, 1648, 409-417.	2.2	23
29	Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 339-351.	3.8	118
30	NF-κB in Innate Neuroprotection and Age-Related Neurodegenerative Diseases. Frontiers in Neurology, 2015, 6, 98.	2.4	73
31	Mitochondrial Dysfunction andα-Synuclein Synaptic Pathology in Parkinson's Disease: Who's on First?. Parkinson's Disease, 2015, 2015, 1-10.	1.1	62
32	CHF5074 (CSP-1103) induces microglia alternative activation in plaque-free Tg2576 mice and primary glial cultures exposed to beta-amyloid. Neuroscience, 2015, 302, 112-120.	2.3	39
33	EGFR Amplified and Overexpressing Glioblastomas and Association With Better Response to Adjuvant Metronomic Temozolomide. Journal of the National Cancer Institute, 2015, 107, .	6.3	39
34	α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons. Journal of Cell Science, 2015, 128, 2231-2243.	2.0	99
35	Pharmacological targeting of the β-amyloid precursor protein intracellular domain. Scientific Reports, 2014, 4, 4618.	3.3	19
36	Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. Neurobiology of Disease, 2013, 49, 177-189.	4.4	83

MARINA PIZZI

#	Article	IF	CITATIONS
37	Late-onset Parkinsonism in NFÂB/c-Rel-deficient mice. Brain, 2012, 135, 2750-2765.	7.6	66
38	NFâ€ÎºB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress. Brain Research, 2012, 1476, 203-210.	2.2	14
39	Glutamatergic Neurons Induce Expression of Functional Glutamatergic Synapses in Primary Myotubes. PLoS ONE, 2012, 7, e31451.	2.5	3
40	1B/(â^')IRE DMT1 Expression during Brain Ischemia Contributes to Cell Death Mediated by NF-κB/RelA Acetylation at Lys310. PLoS ONE, 2012, 7, e38019.	2.5	40
41	The γ-Secretase Modulator CHF5074 Restores Memory and Hippocampal Synaptic Plasticity in Plaque-Free Tg2576 Mice. Journal of Alzheimer's Disease, 2011, 24, 799-816.	2.6	53
42	The γ-Secretase Modulator CHF5074 Reduces the Accumulation of Native Hyperphosphorylated Tau in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2011, 45, 22-31.	2.3	25
43	Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms. Journal of Receptor and Signal Transduction Research, 2011, 31, 315-331.	2.5	20
44	Leptin Is Induced in the Ischemic Cerebral Cortex and Exerts Neuroprotection Through NF-κB/c-Rel–Dependent Transcription. Stroke, 2009, 40, 610-617.	2.0	83
45	Postâ€ischemic brain damage: NFâ€̂#B dimer heterogeneity as a molecular determinant of neuron vulnerability. FEBS Journal, 2009, 276, 27-35.	4.7	48
46	NFâ€̂ºB p50/RelA and câ€Relâ€containing dimers: opposite regulators of neuron vulnerability to ischaemia. Journal of Neurochemistry, 2009, 108, 475-485.	3.9	93
47	Chapter 24 NFâ€KappaB Dimers in the Regulation of Neuronal Survival. International Review of Neurobiology, 2009, 85, 351-362.	2.0	87
48	Glutamatergic Reinnervation and Assembly of Glutamatergic Synapses in Adult Rat Skeletal Muscle Occurs at Cholinergic Endplates. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1103-1115.	1.7	17
49	Blockade of the Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Death Receptor DR5 Prevents β-Amyloid Neurotoxicity. Neuropsychopharmacology, 2007, 32, 872-880.	5.4	36
50	NF-κB in Neurons. , 2006, , 147-161.		1
51	Regulation of Nuclear Factor ÂB in the Hippocampus by Group I Metabotropic Glutamate Receptors. Journal of Neuroscience, 2006, 26, 4870-4879.	3.6	98
52	NF-κB pathway: a target for preventing β-amyloid (Aβ)-induced neuronal damage and Aβ42 production. European Journal of Neuroscience, 2006, 23, 1711-1720.	2.6	131
53	Distinct roles of diverse nuclear factor-κB complexes in neuropathological mechanisms. European Journal of Pharmacology, 2006, 545, 22-28.	3.5	67
54	Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: a new paradigm in spinal cord injury repair. Current Opinion in Neurobiology, 2006, 16, 323-328.	4.2	27

MARINA PIZZI

#	Article	IF	CITATIONS
55	Bim and Noxa Are Candidates to Mediate the Deleterious Effect of the NF-ÂB Subunit RelA in Cerebral Ischemia. Journal of Neuroscience, 2006, 26, 12896-12903.	3.6	119
56	Leptin Increases Axonal Growth Cone Size in Developing Mouse Cortical Neurons by Convergent Signals Inactivating Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 2006, 281, 12950-12958.	3.4	86
57	Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8752-8757.	7.1	76
58	A Bioinformatics Analysis of Memory Consolidation Reveals Involvement of the Transcription Factor c-Rel. Journal of Neuroscience, 2004, 24, 3933-3943.	3.6	157
59	Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Molecular and Cellular Neurosciences, 2004, 25, 301-311.	2.2	84
60	Soluble Interleukin-6 (IL-6) Receptor/IL-6 Fusion Protein Enhances in Vitro Differentiation of Purified Rat Oligodendroglial Lineage Cells. Molecular and Cellular Neurosciences, 2002, 21, 602-615.	2.2	71
61	Opposing Roles for NF-κB/Rel Factors p65 and c-Rel in the Modulation of Neuron Survival Elicited by Glutamate and Interleukin-1β. Journal of Biological Chemistry, 2002, 277, 20717-20723.	3.4	145
62	Spinal cord mGlu1a receptorsPossible target for amyotrophic lateral sclerosis therapy. Pharmacology Biochemistry and Behavior, 2002, 73, 447-454.	2.9	16
63	Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line. European Journal of Neuroscience, 2002, 16, 2342-2350.	2.6	56
64	Reversal of glutamate excitotoxicity by activation of PKC-associated metabotropic glutamate receptors in cerebellar granule cells relies on NR2C subunit expression. European Journal of Neuroscience, 1999, 11, 2489-2496.	2.6	34
65	Neuroprotective effect of thyrotropin-releasing hormone against excitatory amino acid-induced cell death in hippocampal slices. European Journal of Pharmacology, 1999, 370, 133-137.	3.5	25
66	Priming of cultured neurons with sabeluzole results in long-lasting inhibition of neurotoxin-induced tau expression and cell death. , 1997, 26, 95-103.		11
67	Activation of Multiple Metabotropic Glutamate Receptor Subtypes Prevents NMDA-induced Excitotoxicity in Rat Hippocampal Slices. European Journal of Neuroscience, 1996, 8, 1516-1521.	2.6	68
68	Inhibition of Glutamate-induced Neurotoxicity by a Tau Antisense Oligonucleotide in Primary Culture of Rat Cerebellar Granule Cells. European Journal of Neuroscience, 1995, 7, 1603-1613.	2.6	22
69	Molecular mechanisms of glutamate-induced neurodegeneration. International Review of Psychiatry, 1995, 7, 339-348.	2.8	2
70	Differential expression of fetal and mature tau isoforms in primary cultures of rat cerebellar granule cells during differentiation in vitro. Molecular Brain Research, 1995, 34, 38-44.	2.3	14
71	N-methyl-d-aspartate neurotoxicity in hippocampal slices: protection by aniracetam. European Journal of Pharmacology, 1995, 275, 311-314.	3.5	4
72	Lack of vasoactive intestinal peptide-releasing property in prolactin cells from ovariectomized rats: contribution of post-transductional impairments. European Journal of Endocrinology, 1994, 130, 361-365.	3.7	0

Marina Pizzi

#	Article	IF	CITATIONS
73	Antisense strategy unravels tau proteins as molecular risk factors for glutamate-induced neurodegeneration. Cellular and Molecular Neurobiology, 1994, 14, 569-578.	3.3	5
74	A Tau antisense oligonucleotide decreases neurone sensitivity to excitotoxic injury. NeuroReport, 1993, 4, 823-826.	1.2	20
75	Attenuation of Excitatory Amino Acid Toxicity by Metabotropic Glutamate Receptor Agonists and Aniracetam in Primary Cultures of Cerebellar Granule Cells. Journal of Neurochemistry, 1993, 61, 683-689.	3.9	96
76	Tolerance to hypoactivity and sensitization to hyperactivity after chronic treatment with a presynaptic dose of lisuride in rats. European Journal of Pharmacology, 1992, 216, 81-86.	3.5	3
77	Activation of Dopamine D2 Receptors Linked to Voltage-Sensitive Potassium Channels Reduces Forskolin-Induced Cyclic AMP Formation in Rat Pituitary Cells. Journal of Neurochemistry, 1992, 59, 1829-1835.	3.9	14
78	Various Ca2+ entry blockers prevent glutamate-induced neurotoxicity. European Journal of Pharmacology, 1991, 209, 169-173.	3.5	41
79	A Mechanism Additional to Cyclic AMP Accumulation for Vasoactive Intestinal Peptide-Induced Prolactin Release. Neuroendocrinology, 1990, 51, 481-486.	2.5	8
80	Repeated administration of (â^') sulpiride and SCH 23390 differentially up-regulate D-1 and D-2 dopamine receptor function in rat mesostriatal areas but not in cortical-limbic brain regions. European Journal of Pharmacology, 1987, 138, 45-51.	3.5	39
81	Striatal adenylate cyclase-inhibiting dopamine D2 receptors are not affected by the aging process. Neuroscience Letters, 1987, 75, 38-42.	2.1	13
82	Differential up-regulation of D-1 and D-2 dopamine receptor function in mesostriatal areas but not in cortical-limbic brain regions of rats chronically treated with (?)sulpiride and SCH 23390. Drug Development Research, 1987, 11, 243-249.	2.9	2