Douglas B Cines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/472085/publications.pdf

Version: 2024-02-01

86 papers 10,948 citations

39 h-index 80 g-index

87 all docs

87 docs citations

87 times ranked

8377 citing authors

#	Article	IF	CITATIONS
1	Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children: report from an international working group. Blood, 2009, 113 , $2386-2393$.	1.4	2,128
2	Immune Thrombocytopenic Purpura. New England Journal of Medicine, 2002, 346, 995-1008.	27.0	1,237
3	American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Advances, 2019, 3, 3829-3866.	5.2	684
4	The ITP syndrome: pathogenic and clinical diversity. Blood, 2009, 113, 6511-6521.	1.4	662
5	American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Advances, 2018, 2, 3360-3392.	5.2	448
6	Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature, 1984, 309, 633-635.	27.8	412
7	SARS-CoV-2 Vaccine–Induced Immune Thrombotic Thrombocytopenia. New England Journal of Medicine, 2021, 384, 2254-2256.	27.0	412
8	Immune Endothelial-Cell Injury in Heparin-Associated Thrombocytopenia. New England Journal of Medicine, 1987, 316, 581-589.	27.0	408
9	Thrombocytopenia following Pfizer and Moderna <scp>SARSâ€CoV</scp> â€2 vaccination. American Journal of Hematology, 2021, 96, 534-537.	4.1	331
10	Prevalence of Heparin-Associated Antibodies Without Thrombosis in Patients Undergoing Cardiopulmonary Bypass Surgery. Circulation, 1997, 95, 1242-1246.	1.6	293
11	Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. Blood, 2005, 105, 131-138.	1.4	272
12	Heparin-Associated Thrombocytopenia. New England Journal of Medicine, 1980, 303, 788-795.	27.0	265
13	Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications. Blood, 2006, 107, 2346-2353.	1.4	234
14	Comparison of PF4/Heparin ELISA Assay With the ^{14 < /sup>C-Serotonin Release Assay in the Diagnosis of Heparin-induced Thrombocytopenia. American Journal of Clinical Pathology, 1995, 104, 648-654.}	0.7	206
15	Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through Fcĵ³RlIA. Blood, 2001, 98, 2442-2447.	1.4	193
16	Abciximab Readministration. Circulation, 2001, 104, 870-875.	1.6	143
17	Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin. Blood, 2004, 104, 3173-3180.	1.4	140
18	Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia. Blood, 2010, 116, 5021-5031.	1.4	134

#	Article	IF	Citations
19	Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood. Blood, 2016, 127, 149-159.	1.4	133
20	Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight, 2018, 3, .	5.0	115
21	Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood, 2015, 125, 2558-2567.	1.4	109
22	Atomic description of the immune complex involved in heparin-induced thrombocytopenia. Nature Communications, 2015, 6, 8277.	12.8	101
23	Thrombocytopenia in pregnancy. Blood, 2017, 130, 2271-2277.	1.4	100
24	Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Therapeutic Delivery, 2015, 6, 795-826.	2.2	91
25	Platelet transactivation by monocytes promotes thrombosis in heparin-induced thrombocytopenia. Blood, 2016, 127, 464-472.	1.4	86
26	Heparin-induced thrombocytopenia: An autoimmune disorder regulated through dynamic autoantigen assembly/disassembly. Journal of Clinical Apheresis, 2007, 22, 31-36.	1.3	74
27	Neutrophil α-Defensins Cause Lung Injury by Disrupting the Capillary–Epithelial Barrier. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 935-946.	5.6	7 3
28	Defensin Modulates Tissue-type Plasminogen Activator and Plasminogen Binding to Fibrin and Endothelial Cells. Journal of Biological Chemistry, 1996, 271, 17650-17655.	3.4	72
29	Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond. Transfusion Medicine Reviews, 2017, 31, 26-35.	2.0	67
30	Dynamic antibody-binding properties in the pathogenesis of HIT. Blood, 2012, 120, 1137-1142.	1.4	65
31	Can Immune Thrombocytopenia Be Cured with Medical Therapy?. Seminars in Thrombosis and Hemostasis, 2015, 41, 395-404.	2.7	63
32	Pathogenesis of heparin-induced thrombocytopenia. Translational Research, 2020, 225, 131-140.	5.0	61
33	Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood, 2016, 128, 110-119.	1.4	59
34	Polyphosphate/platelet factor 4 complexes can mediate heparin-independent platelet activation in heparin-induced thrombocytopenia. Blood Advances, 2016, 1, 62-74.	5.2	58
35	Blood clot contraction differentially modulates internal and external fibrinolysis. Journal of Thrombosis and Haemostasis, 2019, 17, 361-370.	3.8	57
36	Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood, 2020, 135, 1270-1280.	1.4	55

#	Article	IF	CITATIONS
37	SARS-CoV-2 vaccination and ITP in patients with de novo or preexisting ITP. Blood, 2022, 139, 1564-1574.	1.4	55
38	Release of IL-6 After Stroke Contributes to Impaired Cerebral Autoregulation and Hippocampal Neuronal Necrosis Through NMDA Receptor Activation and Upregulation of ET-1 and JNK. Translational Stroke Research, 2019, 10, 104-111.	4.2	53
39	Menstrual cyclic thrombocytopenia. British Journal of Haematology, 1989, 71, 519-524.	2.5	48
40	The risk of major bleeding in patients with suspected heparinâ€induced thrombocytopenia. Journal of Thrombosis and Haemostasis, 2019, 17, 1956-1965.	3.8	42
41	Thrombocytopenia in pregnancy. Hematology American Society of Hematology Education Program, 2017, 2017, 144-151.	2.5	40
42	Erythrocytes identify complement activation in patients with COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L485-L489.	2.9	39
43	Prospective comparison of the HEP score and 4Ts score for the diagnosis of heparin-induced thrombocytopenia. Blood Advances, 2018, 2, 3155-3162.	5.2	38
44	Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. Journal of Clinical Investigation, 2017, 127, 1090-1098.	8.2	37
45	COVID-19–associated Acute Respiratory Distress Syndrome Clarified: A Vascular Endotype?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 750-753.	5.6	36
46	Polyreactive IgM initiates complement activation by PF4/heparin complexes through the classical pathway. Blood, 2018, 132, 2431-2440.	1.4	35
47	Pathogenesis of heparin-induced thrombocytopenia and thrombosis. Autoimmunity Reviews, 2002, 1, 125-132.	5.8	33
48	Thrombocytopenia in pregnancy: Diagnosis and approach to management. Blood Reviews, 2020, 40, 100638.	5.7	31
49	Antibodies associated with heparin-induced thrombocytopenia (HIT) inhibit activated protein C generation: new insights into the prothrombotic nature of HIT. Blood, 2011, 118, 2882-2888.	1.4	30
50	Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models. Blood, 2015, 125, 3326-3334.	1.4	30
51	ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 1. Structural and functional characterization in vitro. Transfusion, 2016, 56, 1763-1774.	1.6	29
52	COVID-19 vaccination and immune thrombocytopenia. Nature Medicine, 2021, 27, 1145-1146.	30.7	29
53	Targeting thrombomodulin to circulating red blood cells augments its protective effects in models of endotoxemia and ischemiaâ€reperfusion injury. FASEB Journal, 2017, 31, 761-770.	0.5	27
54	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Bloodâ€"Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26

#	Article	IF	CITATIONS
55	ICAM-1–targeted thrombomodulin mitigates tissue factor–driven inflammatory thrombosis in a human endothelialized microfluidic model. Blood Advances, 2017, 1, 1452-1465.	5.2	26
56	Complement mediates binding and procoagulant effects of ultralarge HIT immune complexes. Blood, 2021, 138, 2106-2116.	1.4	23
57	FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood, 2020, 135, 2085-2093.	1.4	19
58	Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT). Autoimmunity Reviews, 2016, 15, 752-755.	5.8	17
59	ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 2. Pathogenicity in an animal model. Transfusion, 2016, 56, 1775-1785.	1.6	16
60	\hat{l}_{\pm} -Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol. Journal of Biological Chemistry, 2016, 291, 2777-2786.	3.4	16
61	Role of monocytes and endothelial cells in heparin-induced thrombocytopenia. Thrombosis and Haemostasis, 2016, 116, 806-812.	3.4	15
62	Alphaâ€defensins: risk factor for thrombosis in COVIDâ€19 infection. British Journal of Haematology, 2021, 194, 44-52.	2.5	15
63	Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Scientific Reports, 2021, 11, 8205.	3.3	12
64	Management of antithrombotic therapy in adults with immune thrombocytopenia (ITP): a survey of ITP specialists and general hematologist–oncologists. Journal of Thrombosis and Thrombolysis, 2018, 46, 24-30.	2.1	11
65	Molecular and cellular pathogenesis of heparin-induced thrombocytopenia (HIT). Autoimmunity Reviews, 2018, 17, 1046-1052.	5.8	11
66	Tissue-Type Plasminogen Activator-A ^{296–299} Prevents Impairment of Cerebral Autoregulation After Stroke Through Lipoprotein-Related Receptor–Dependent Increase in cAMP and p38. Stroke, 2016, 47, 2096-2102.	2.0	9
67	Dynamic intercellular redistribution of HIT antigen modulates heparin-induced thrombocytopenia. Blood, 2018, 132, 727-734.	1.4	9
68	Human neutrophil peptideâ€1 inhibits thrombus formation under arterial flow via its terminal free cysteine thiols. Journal of Thrombosis and Haemostasis, 2019, 17, 596-606.	3.8	9
69	tPA variant tPAâ€A ^{296–299} Prevents impairment of cerebral autoregulation and necrosis of hippocampal neurons after stroke by inhibiting upregulation of ETâ€1. Journal of Neuroscience Research, 2018, 96, 128-137.	2.9	8
70	Mesenchymal stromal cells enhance self-assembly of a HUVEC tubular network through uPA-uPAR/VEGFR2/integrin/NOTCH crosstalk. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119157.	4.1	8
71	Antigen and substrate withdrawal in the management of autoimmune thrombotic disorders. Blood, 2012, 120, 4134-4142.	1.4	6
72	Diagnosing HIT: the need for speed. Blood, 2020, 135, 1082-1083.	1.4	5

#	Article	IF	CITATIONS
73	T2 Magnetic Resonance to Monitor Hemostasis. Seminars in Thrombosis and Hemostasis, 2019, 45, 247-252.	2.7	3
74	Erythrocyte Coupled tPA Improves Outcomes of Percussion Brain Trauma in Rats Blood, 2006, 108, 897-897.	1.4	3
75	Regulation of neovascularization by human neutrophil peptides (α-defensins): a link between inflammation and angiogenesis. , 2004, 18, 1306.		1
76	Dietary Hypercholesterolemia Enhances Heparin-Induced Thrombocytopenia/Thrombosis: A Prothrombotic Risk Factor in a Transgenic Mouse Model Blood, 2005, 106, 56-56.	1.4	1
77	A Microfluidic Model of Microvascular Inflammation: Characterization and Testing of Endothelial-Targeted Therapeutics. Blood, 2015, 126, 3454-3454.	1.4	1
78	Inhibition of Pathological Retinal Neovascularization by α-Defensins Blood, 2005, 106, 3678-3678.	1.4	1
79	Monocytes Are a Particularly Favorable Target for Surface Platelet Factor 4 (PF4) Antigenic Complex Formation in Heparin-Induced Thrombocytopenia: New Insights into the Thrombotic Risk in HIT. Blood, 2008, 112, 271-271.	1.4	1
80	Membrane Remodeling By Pathogenic Antibodies Underlies Monocyte Activation in Heparin-Induced Thrombocytopenia. Blood, 2015, 126, 2244-2244.	1.4	1
81	Coupling Tissue Type Plasminogen Activator to Carrier Erythrocyte Protects Against Plasma Inhibitors Blood, 2005, 106, 1881-1881.	1.4	0
82	Interaction of High Molecular Weight Kininogen with Endothelial Cell Receptors suPAR, gC1qR and Cytokeratin 1 by Surface Plasmon Resonance (BiaCore) Blood, 2005, 106, 2666-2666.	1.4	0
83	Platelet Factor 4 (PF4) Antigenic Complexes on the Macrophage Surface: Implications for the Pathogenesis of Heparin Induced Thrombocytopenia (HIT) Blood, 2006, 108, 94-94.	1.4	0
84	Cleaved high molecular weight kininogen (HKa) enhances the association of human $\hat{l}\pm\nu\hat{l}^23$ to the complex formed by urokinase and urokinase plasminogen activator receptor (uPAR). FASEB Journal, 2007, 21, A178.	0.5	0
85	Visualizing the Molecular and Cellular Basis of Heparin Induced Thrombocytopenia Blood, 2009, 114, 228-228.	1.4	0
86	Human Neutrophil Peptides (HNPs) Enhance Thrombus Formation Under Flow By Inhibiting Proteolytic Activity of Plasma ADAMTS13 Metalloprotease. Blood, 2015, 126, 105-105.	1.4	O