Latha Ramalingam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4720727/publications.pdf

Version: 2024-02-01

19 papers	708 citations	687363 13 h-index	19 g-index
19 all docs	19 docs citations	19 times ranked	1320 citing authors

#	Article	IF	CITATIONS
1	Sex Differences in Fish Oil and Olanzapine Effects on Gut Microbiota in Diet-Induced Obese Mice. Nutrients, 2022, 14, 349.	4.1	2
2	C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines, 2021, 9, 270.	3.2	20
3	Maternal Obesity: A Focus on Maternal Interventions to Improve Health of Offspring. Frontiers in Cardiovascular Medicine, 2021, 8, 696812.	2.4	19
4	Curcumin Reduces Adipose Tissue Inflammation and Alters Gut Microbiota in Dietâ€Induced Obese Male Mice. Molecular Nutrition and Food Research, 2021, 65, e2100274.	3.3	32
5	Uncoupling protein 1-independent effects of eicosapentaenoic acid in brown adipose tissue of diet-induced obese female mice. Journal of Nutritional Biochemistry, 2021, 98, 108819.	4.2	6
6	Sex Differences in Early Programming by Maternal High Fat Diet Induced-Obesity and Fish Oil Supplementation in Mice. Nutrients, 2021, 13, 3703.	4.1	9
7	Sex-Dependent Effects of Eicosapentaenoic Acid on Hepatic Steatosis in UCP1 Knockout Mice. Biomedicines, 2021, 9, 1549.	3.2	1
8	Eicosapentaenoic Acid Regulates Inflammatory Pathways through Modulation of Transcripts and miRNA in Adipose Tissue of Obese Mice. Biomolecules, 2020, 10, 1292.	4.0	7
9	Discordant Dose-Dependent Metabolic Effects of Eicosapentanoic Acid in Diet-Induced Obese Mice. Nutrients, 2020, 12, 1342.	4.1	12
10	Low dose radiation, inflammation, cancer and chemoprevention. International Journal of Radiation Biology, 2019, 95, 506-515.	1.8	16
11	Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients, 2019, 11, 599.	4.1	32
12	Eicosapentaenoic Acid Reduces Adiposity, Glucose Intolerance and Increases Oxygen Consumption Independently of Uncoupling Protein 1. Molecular Nutrition and Food Research, 2019, 63, e1800821.	3.3	26
13	Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. Journal of Nutritional Biochemistry, 2018, 58, 1-16.	4.2	196
14	Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1523-1531.	2.4	23
15	Maternal and Postnatal Supplementation of Fish Oil Improves Metabolic Health of Mouse Male Offspring. Obesity, 2018, 26, 1740-1748.	3.0	18
16	An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice. Oncotarget, 2018, 9, 9246-9261.	1.8	19
17	The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1106-1114.	3.8	163
18	Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. Journal of Nutritional Biochemistry, 2017, 39, 101-109.	4.2	79

#	Article	IF	CITATIONS
19	Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity. Obesity, 2016, 24, 359-367.	3.0	28