
Mark S Wipfli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4720665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pacific Salmon in Aquatic and Terrestrial Ecosystems. BioScience, 2002, 52, 917.	4.9	431
2	Ecological Linkages Between Headwaters and Downstream Ecosystems: Transport of Organic Matter, Invertebrates, and Wood Down Headwater Channels ¹ . Journal of the American Water Resources Association, 2007, 43, 72-85.	2.4	241
3	Influence of salmon carcasses on stream productivity: response of biofilm and benthic macroinvertebrates in southeastern Alaska, U.S.A Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55, 1503-1511.	1.4	238
4	Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old-growth and young-growth riparian forests in southeastern Alaska, U.S.A Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 1259-1269.	1.4	205
5	Marine Subsidies in Freshwater Ecosystems: Salmon Carcasses Increase the Growth Rates of Stream-Resident Salmonids. Transactions of the American Fisheries Society, 2003, 132, 371-381.	1.4	178
6	Linking Ecosystems, Food Webs, and Fish Production: Subsidies in Salmonid Watersheds. Fisheries, 2010, 35, 373-387.	0.8	167
7	Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshwater Biology, 2002, 47, 957-969.	2.4	157
8	Influence of salmon spawner densities on stream productivity in Southeast Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1600-1611.	1.4	155
9	Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60, 309-320.	1.4	149
10	Marine carbon and nitrogen in southeastern Alaska stream food webs: evidence from artificial and natural streams. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 1257-1265.	1.4	124
11	Influence of decomposing Pacific salmon carcasses on macroinvertebrate growth and standing stock in southeastern Alaska streams. Journal of the North American Benthological Society, 2002, 21, 430-442.	3.1	94
12	Mass loss and macroinvertebrate colonisation of Pacific salmon carcasses in south-eastern Alaskan streams. Freshwater Biology, 2002, 47, 263-273.	2.4	84
13	Does red alder (Alnus rubra) in upland riparian forests elevate macroinvertebrate and detritus export from headwater streams to downstream habitats in southeastern Alaska?. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 503-513.	1.4	77
14	Marine-derived nitrogen and carbon in freshwater-riparian food webs of the Copper River Delta, southcentral Alaska. Oecologia, 2005, 144, 558-569.	2.0	77
15	Marine Subsidies in Freshwater: Effects of Salmon Carcasses on Lipid Class and Fatty Acid Composition of Juvenile Coho Salmon. Transactions of the American Fisheries Society, 2004, 133, 559-567.	1.4	61
16	Climate change implications in the northern coastal temperate rainforest of North America. Climatic Change, 2015, 130, 155-170.	3.6	61
17	Future of Pacific Salmon in the Face of Environmental Change: Lessons from One of the World's Remaining Productive Salmon Regions. Fisheries, 2017, 42, 538-553.	0.8	58
18	Restoring Productivity of Salmonâ€Based Food Webs: Contrasting Effects of Salmon Carcass and Salmon Carcass Analog Additions on Streamâ€Resident Salmonids. Transactions of the American Fisheries Society, 2004, 133, 1440-1454.	1.4	43

MARK S WIPFLI

#	Article	IF	CITATIONS
19	Measuring fish and their physical habitats: versatile 2D and 3D video techniques with user-friendly software. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1861-1873.	1.4	40
20	Effects of experimentally added salmon subsidies on resident fishes via direct and indirect pathways. Ecosphere, 2016, 7, e01248.	2.2	37
21	The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 917-930.	1.4	36
22	Seasonal cues of Arctic grayling movement in a small Arctic stream: the importance of surface water connectivity. Environmental Biology of Fishes, 2016, 99, 49-65.	1.0	33
23	Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72, 1125-1137.	1.4	32
24	Effects of forest fire on headwater stream macroinvertebrate communities in eastern Washington, U.S.A Freshwater Biology, 2008, 53, 2331-2343.	2.4	31
25	Morphology-Dependent Water Budgets and Nutrient Fluxes in Arctic Thaw Ponds. Permafrost and Periglacial Processes, 2014, 25, 79-93.	3.4	31
26	Surface water connectivity drives richness and composition of Arctic lake fish assemblages. Freshwater Biology, 2016, 61, 1090-1104.	2.4	31
27	Salmon Carcasses Increase Stream Productivity More than Inorganic Fertilizer Pellets: A Test on Multiple Trophic Levels in Streamside Experimental Channels. Transactions of the American Fisheries Society, 2010, 139, 824-839.	1.4	30
28	Disturbance to a stream food web by a bacterial larvicide specific to black flies: feeding responses of predatory macroinvertebrates. Freshwater Biology, 1994, 32, 91-103.	2.4	28
29	Mechanisms of drift-feeding behavior in juvenile Chinook salmon and the role of inedible debris in a clear-water Alaskan stream. Environmental Biology of Fishes, 2014, 97, 489-503.	1.0	27
30	Effects of Bacillus thuringiensis var. israelensis on Nontarget Benthic Insects through Direct and Indirect Exposure. Journal of the North American Benthological Society, 1994, 13, 190-205.	3.1	26
31	Identification of Marineâ€Derived Lipids in Juvenile Coho Salmon and Aquatic Insects through Fatty Acid Analysis. Transactions of the American Fisheries Society, 2010, 139, 840-854.	1.4	25
32	Body size and condition influence migration timing of juvenile Arctic grayling. Ecology of Freshwater Fish, 2016, 25, 156-166.	1.4	25
33	Trophic linkages between headwater forests and downstream fish habitats: implications for forest and fish management. Landscape and Urban Planning, 2005, 72, 205-213.	7.5	24
34	A Critical Assessment of the Ecological Assumptions Underpinning Compensatory Mitigation of Salmon-Derived Nutrients. Environmental Management, 2015, 56, 571-586.	2.7	24
35	Seasonal persistence of marineâ€derived nutrients in southâ€central Alaskan salmon streams. Ecosphere, 2013, 4, 1-18.	2.2	23
36	A science of integration: frameworks, processes, and products in a place-based, integrative study. Sustainability Science, 2017, 12, 293-303.	4.9	22

MARK S WIPFLI

#	Article	IF	CITATIONS
37	Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 502-512.	1.4	21
38	Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments. Ecology of Freshwater Fish, 2018, 27, 767-784.	1.4	20
39	CHANGES IN FEEDING HABITS OF SELECTED NONTARGET AQUATIC INSECTS IN RESPONSE TO LIVE AND <i>BACILLUS THURINGIENSIS</i> VAR. <i>ISRAELENSIS</i> DE BARJAC-KILLED BLACK FLY LARVAE (DIPTERA:) Tj	ETQqa&1(0.7814314 rg <mark>8</mark> 1
40	Top-down control of invertebrates by Ninespine Stickleback in Arctic ponds. Freshwater Science, 2017, 36, 124-137.	1.8	18
41	Persistent Effects of Wildfire and Debris Flows on the Invertebrate Prey Base of Rainbow Trout in Idaho Streams. Northwest Science, 2011, 85, 55-63.	0.2	17
42	Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics. Ecosphere, 2014, 5, 1-22.	2.2	17
43	Trophic pathways supporting juvenile Chinook and coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial food resource use across a seasonally dynamic habitat mosaic. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1626-1641.	1.4	17
44	The complementary role of lentic and lotic habitats for Arctic grayling in a complex streamâ€lake network in Arctic Alaska. Ecology of Freshwater Fish, 2019, 28, 209-221.	1.4	17
45	Factors affecting distribution of wood, detritus, and sediment in headwater streams draining managed young-growth red alder – conifer forests in southeast Alaska. Canadian Journal of Forest Research, 2006, 36, 725-737.	1.7	16
46	Invasive European bird cherry (<i>Prunus padus</i>) reduces terrestrial prey subsidies to urban Alaskan salmon streams. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1679-1690.	1.4	16
47	Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska. Ecology of Freshwater Fish, 2018, 27, 184-197.	1.4	16
48	Low Toxicity of the Black Fly LarvicideBacillus thuringiensisvar.israelensisto Early Stages of Brook Trout (Salvelinus fontinalis), Brown Trout (Salmo trutta), and Steelhead Trout (Oncorhynchus my) Tj ETQq0 0 (51, 1451-1458.) rgBT /Ove 1.4	erlock 10 Tf 50
49	Getting quantitative about consequences of cross-ecosystem resource subsidies on recipient consumers. Canadian Journal of Fisheries and Aquatic Sciences, 2016, 73, 1609-1615.	1.4	13
50	A general model of temporary aquatic habitat use: Water phenology as a life history filter. Fish and Fisheries, 2019, 20, 802-816.	5.3	13
51	Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river. Hydrobiologia, 2013, 701, 189-207.	2.0	12
52	Reverberating effects of resource exchanges in stream–riparian food webs. Oecologia, 2020, 192, 179-189.	2.0	12
53	Ecoregion and landâ€use influence invertebrate and detritus transport from headwater streams. Freshwater Biology, 2010, 55, 1205-1218.	2.4	11
54	Aquatic Community Responses to Salmon Carcass Analog and Wood Bundle Additions in Restored Floodplain Habitats in an Alaskan Stream. Transactions of the American Fisheries Society, 2010, 139, 1828-1845.	1.4	11

MARK S WIPFLI

#	Article	IF	CITATIONS
55	Effects of invasive European bird cherry (Prunus padus) on leaf litter processing by aquatic invertebrate shredder communities in urban Alaskan streams. Hydrobiologia, 2014, 736, 17-30.	2.0	11
56	Feeding variability among individual aquatic predators in experimental channels. Canadian Journal of Zoology, 1993, 71, 2033-2037.	1.0	10
57	Evidence of energy and nutrient transfer from invasive pink salmon (<i>Oncorhynchus) Tj ETQq1 1 0.784314 rgBT</i>	[/Overlock 1.4	10 Tf 50 6 10
58	Headwater streams and forest management: Does ecoregional context influence logging effects on benthic communities?. Hydrobiologia, 2010, 641, 71-83.	2.0	8
59	Surface water connectivity controls fish food web structure and complexity across local- and meta-food webs in Arctic Coastal Plain lakes. Food Webs, 2019, 21, e00123.	1.2	6
60	Prey partitioning and use of insects by juvenile sockeye salmon and a potential competitor, threespine stickleback, in Afognak Lake, Alaska. Ecology of Freshwater Fish, 2017, 26, 586-601.	1.4	5
61	Riparian defoliation by the invasive green alder sawfly influences terrestrial prey subsidies to salmon streams. Ecology of Freshwater Fish, 2018, 27, 963-975.	1.4	4
62	Invertebrate prey contributions to juvenile Coho Salmon diet from riparian habitats along three Alaska streams: Implications for environmental change. Journal of Freshwater Ecology, 2019, 34, 617-631.	1.2	4
63	Bridging the Gap Between Salmon Spawner Abundance and Marine Nutrient Assimilation by Juvenile Salmon: Seasonal Cycles and Landscape Effects at the Watershed Scale. Ecosystems, 2020, 23, 338-358.	3.4	4
64	Terrestrial and semi-aquatic scavengers on invasive Pacific pink salmon (Oncorhynchus gorbuscha) carcasses in a riparian ecosystem in northern Norway. Biological Invasions, 2021, 23, 973-979.	2.4	4
65	Radiotelemetry to Estimate Stream Life of Adult Chum Salmon in the McNeil River, Alaska. North American Journal of Fisheries Management, 2011, 31, 315-322.	1.0	3
66	Piscine predation on juvenile salmon in subâ€arctic Alaskan rivers: Associations with season, habitat, predator size and streamflow. Ecology of Freshwater Fish, 0, , .	1.4	3
67	Strontium isotopes reveal diverse life history variations, migration patterns, and habitat use for Broad Whitefish (Coregonus nasus) in Arctic, Alaska. PLoS ONE, 2022, 17, e0259921.	2.5	2
68	Juvenile Coho and Chinook Salmon Growth, Size, and Condition Linked To Watershed cale Salmon Spawner Abundance. Transactions of the American Fisheries Society, 2021, 150, 307-326.	1.4	1
69	Arctic insect emergence timing and composition differs across thaw ponds of varying morphology. Arctic, Antarctic, and Alpine Research, 2021, 53, 110-126.	1.1	1
70	Landscape geomorphology and localâ€riverine features influence Broad Whitefish (<i>Coregonus) Tj ETQq0 0 0 r</i>	gBT /Overl 1.4	ock 10 Tf 5
71	A suction pump sampler for invertebrate drift detects exceptionally high concentrations of small invertebrates that drift nets miss. Hydrobiologia, 2022, 849, 2077.	2.0	1

In Search of Arctic Bonefish. Fisheries, 2017, 42, 315-319.

0.8 0

#	Article	IF	CITATIONS
73	Will Alaska's Fisheries Regime Prove Resilient? Kenai River Fishery Management as a Model for AdaptiveÂGovernance. Fisheries, 2018, 43, 26-30.	0.8	0