Giovanni Giurdanella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4720304/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pericytes in Microvessels: From "Mural―Function to Brain and Retina Regeneration. International Journal of Molecular Sciences, 2019, 20, 6351.	4.1	79
2	P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochemical Pharmacology, 2017, 138, 130-139.	4.4	71
3	Role of phospholipases A2 in diabetic retinopathy: In vitro and in vivo studies. Biochemical Pharmacology, 2013, 86, 1603-1613.	4.4	67
4	Aflibercept, bevacizumab and ranibizumab prevent glucose-induced damage in human retinal pericytes in vitro, through a PLA2/COX-2/VEGF-A pathway. Biochemical Pharmacology, 2015, 96, 278-287.	4.4	63
5	Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia. Neuropharmacology, 2019, 146, 212-221.	4.1	59
6	Aflibercept regulates retinal inflammation elicited by high glucose via the PIGF/ERK pathway. Biochemical Pharmacology, 2019, 168, 341-351.	4.4	57
7	Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. Journal of Lipid Research, 2007, 48, 782-793.	4.2	54
8	Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Biochemical Pharmacology, 2017, 142, 145-154.	4.4	42
9	Activation of phospholipase A2 and MAP kinases by oxidized low-density lipoproteins in immortalized GP8.39 endothelial cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1735, 135-150.	2.4	39
10	TGF-β1 prevents rat retinal insult induced by amyloid-β (1–42) oligomers. European Journal of Pharmacology, 2016, 787, 72-77.	3.5	39
11	Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochemical Pharmacology, 2019, 168, 249-258.	4.4	39
12	Antiangiogenic Effect of (±)-Haloperidol Metabolite II Valproate Ester [(±)-MRJF22] in Human Microvascular Retinal Endothelial Cells. Journal of Medicinal Chemistry, 2016, 59, 9960-9966.	6.4	37
13	Altered dopamine D3 receptor gene expression in MAM model of schizophrenia is reversed by peripubertal cannabidiol treatment. Biochemical Pharmacology, 2020, 177, 114004.	4.4	36
14	Cytosolic and calcium-independent phospholipase A2 mediate glioma-enhanced proangiogenic activity of brain endothelial cells. Microvascular Research, 2011, 81, 1-17.	2.5	35
15	Activation of the VEGF-A/ERK/PLA2 Axis Mediates Early Retinal Endothelial Cell Damage Induced by High Glucose: New Insight from an In Vitro Model of Diabetic Retinopathy. International Journal of Molecular Sciences, 2020, 21, 7528.	4.1	35
16	Retinal Protection and Distribution of Curcumin in Vitro and in Vivo. Frontiers in Pharmacology, 2018, 9, 670.	3.5	34
17	Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes?. Biochimie, 2014, 99, 77-87.	2.6	33
18	The antineoplastic drug flavopiridol reverses memory impairment induced by Amyloid-ß 1-42 oligomers in mice. Pharmacological Research, 2016, 106, 10-20.	7.1	32

GIOVANNI GIURDANELLA

#	Article	IF	CITATIONS
19	Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World Journal of Stem Cells, 2021, 13, 632-644.	2.8	27
20	Regulation of vascular tone in rabbit ophthalmic artery: Cross talk of endogenous and exogenous gas mediators. Biochemical Pharmacology, 2014, 92, 661-668.	4.4	26
21	Pericyte-like differentiation of human adipose-derived mesenchymal stem cells: An <i>in vitro</i> study. World Journal of Stem Cells, 2020, 12, 1152-1170.	2.8	25
22	PKCα-MAPK/ERK-phospholipase A2 signaling is required for human melanoma-enhanced brain endothelial cell proliferation and motility. Microvascular Research, 2009, 78, 338-357.	2.5	24
23	MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 172-186.	2.4	23
24	Dopaminergic-GABAergic interplay and alcohol binge drinking. Pharmacological Research, 2019, 141, 384-391.	7.1	18
25	Apixaban Enhances Vasodilatation Mediated by Protease-Activated Receptor 2 in Isolated Rat Arteries. Frontiers in Pharmacology, 2017, 8, 480.	3.5	17
26	Effects of High Glucose Concentration on Pericyte-Like Differentiated Human Adipose-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 4604.	4.1	16
27	Targeting the miRNA-155/TNFSF10 network restrains inflammatory response in the retina in a mouse model of Alzheimer's disease. Cell Death and Disease, 2021, 12, 905.	6.3	16
28	Involvement of PKCα–MAPK/ERK-phospholipase A2 pathway in the Escherichia coli invasion of brain microvascular endothelial cells. Neuroscience Letters, 2012, 511, 33-37.	2.1	15
29	Uveal Melanoma Cells Elicit Retinal Pericyte Phenotypical and Biochemical Changes in an in Vitro Model of Coculture. International Journal of Molecular Sciences, 2020, 21, 5557.	4.1	13
30	Isolation, cultivation, and characterization of primary bovine cochlear pericytes: A new in vitro model of stria vascularis. Journal of Cellular Physiology, 2019, 234, 1978-1986.	4.1	10
31	Haloperidol Metabolite II Valproate Ester (<i>S</i>)-(â^')-MRJF22: Preliminary Studies as a Potential Multifunctional Agent Against Uveal Melanoma. Journal of Medicinal Chemistry, 2021, 64, 13622-13632.	6.4	9
32	UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway. Microvascular Research, 2008, 75, 330-342.	2.5	8
33	Glucose-Impaired Corneal Re-Epithelialization Is Promoted by a Novel Derivate of Dimethyl Fumarate. Antioxidants, 2021, 10, 831.	5.1	6
34	The Anti-Inflammatory Effect of the β1-Adrenergic Receptor Antagonist Metoprolol on High Glucose Treated Human Microvascular Retinal Endothelial Cells. Cells, 2022, 11, 51.	4.1	6
35	Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film. Biochimie, 2012, 94, 1860-1870.	2.6	2