
Yuqing He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4720167/publications.pdf Version: 2024-02-01

YUOING HE

#	Article	IF	CITATIONS
1	Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011, 43, 1266-1269.	21.4	821
2	Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin. Nature Biotechnology, 2000, 18, 1101-1104.	17.5	412
3	Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 2014, 46, 398-404.	21.4	281
4	A High-Density SNP Genotyping Array for Rice Biology and Molecular Breeding. Molecular Plant, 2014, 7, 541-553.	8.3	251
5	OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications, 2014, 5, 4847.	12.8	214
6	Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5411-9.	7.1	165
7	GL3.3, a Novel QTL Encoding a GSK3/SHAGGY-like Kinase, Epistatically Interacts with GS3 to Produce Extra-long Grains in Rice. Molecular Plant, 2018, 11, 754-756.	8.3	113
8	Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice, 2016, 9, 30.	4.0	105
9	BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism. BMC Genomics, 2014, 15, 674.	2.8	86
10	Rice grain quality—traditional traits for high quality rice and health-plus substances. Molecular Breeding, 2020, 40, 1.	2.1	78
11	Pyramiding and evaluation of the brown planthopper resistance genes Bph14 and Bph15 in hybrid rice. Molecular Breeding, 2012, 29, 61-69.	2.1	70
12	Natural variation and artificial selection in four genes determine grain shape in rice. New Phytologist, 2013, 200, 1269-1280.	7.3	70
13	The QTL controlling amino acid content in grains of rice (Oryza sativa) are co-localized with the regions involved in the amino acid metabolism pathway. Molecular Breeding, 2007, 21, 127-137.	2.1	69
14	Genome-wide Association Analyses Reveal the Genetic Basis of Stigma Exsertion in Rice. Molecular Plant, 2017, 10, 634-644.	8.3	66
15	Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Molecular Breeding, 2012, 30, 1679-1688.	2.1	65
16	Pyramiding and evaluation of three dominant brown planthopper resistance genes in the elite <i>indica</i> rice 9311 and its hybrids. Pest Management Science, 2013, 69, 802-808.	3.4	61
17	Identification and analysis of brown planthopper-responsive microRNAs in resistant and susceptible rice plants. Scientific Reports, 2017, 7, 8712.	3.3	58
18	Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis. Frontiers in Plant Science, 2018, 9, 612.	3.6	53

YUQING HE

#	Article	IF	CITATIONS
19	Comparative mapping of chalkiness components in rice using five populations across two environments. BMC Genetics, 2014, 15, 49.	2.7	51
20	How rice organs are colored: The genetic basis of anthocyanin biosynthesis in rice. Crop Journal, 2021, 9, 598-608.	5.2	44
21	The origin of <i>Wx</i> ^{<i>la</i>} provides new insights into the improvement of grain quality in rice. Journal of Integrative Plant Biology, 2021, 63, 878-888.	8.5	43
22	Natural variation in <i>WHITE-CORE RATE 1</i> regulates redox homeostasis in rice endosperm to affect grain quality. Plant Cell, 2022, 34, 1912-1932.	6.6	41
23	Fine mapping and pyramiding of brown planthopper resistance genes QBph3 and QBph4 in an introgression line from wild rice O. officinalis. Molecular Breeding, 2015, 35, 1.	2.1	38
24	Development and evaluation of improved lines with broad-spectrum resistance to rice blast using nine resistance genes. Rice, 2019, 12, 29.	4.0	34
25	Genetic Architecture of Natural Variation in Rice Nonphotochemical Quenching Capacity Revealed by Genome-Wide Association Study. Frontiers in Plant Science, 2017, 8, 1773.	3.6	33
26	Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Gene, 2014, 536, 287-295.	2.2	30
27	Genetic mapping and validation of quantitative trait loci for stigma exsertion rate in rice. Molecular Breeding, 2014, 34, 2131-2138.	2.1	28
28	Evaluation and breeding application of six brown planthopper resistance genes in rice maintainer line Jin 23B. Rice, 2018, 11, 22.	4.0	28
29	Genomeâ€wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnology Journal, 2019, 17, 2211-2222.	8.3	26
30	Analysis of minor quantitative trait loci for eating and cooking quality traits in rice using a recombinant inbred line population derived from two indica cultivars with similar amylose content. Molecular Breeding, 2014, 34, 2151-2163.	2.1	22
31	Identification of quantitative trait loci for grain size and the contributions of major grain-size QTLs to grain weight in rice. Molecular Breeding, 2013, 31, 451-461.	2.1	20
32	QTLs identification of crude fat content in brown rice and its genetic basis analysis using DH and two backcross populations. Euphytica, 2009, 169, 197-205.	1.2	18
33	Genetic architecture and key genes controlling the diversity of oil composition in rice grains. Molecular Plant, 2021, 14, 456-469.	8.3	18
34	Genetic mapping and confirmation of quantitative trait loci for grain chalkiness in rice. Molecular Breeding, 2016, 36, 1.	2.1	17
35	Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw. Scientific Reports, 2018, 8, 3636.	3.3	17
36	Identification of a Novel Semi-Dominant Spotted-Leaf Mutant with Enhanced Resistance to Xanthomonas oryzae pv. oryzae in Rice. International Journal of Molecular Sciences, 2018, 19, 3766.	4.1	17

Yuqing He

#	Article	IF	CITATIONS
37	QTL analysis on rice grain appearance quality, as exemplifying the typical events of transgenic or backcrossing breeding. Breeding Science, 2014, 64, 231-239.	1.9	16
38	Gene diagnosis and targeted breeding for blast-resistant Kongyu 131 without changing regional adaptability. Journal of Genetics and Genomics, 2018, 45, 539-547.	3.9	16
39	Dissecting combining ability effect in a rice NCII-III population provides insights into heterosis in indica-japonica cross. Rice, 2017, 10, 39.	4.0	15
40	Identification of Blast Resistance QTLs Based on Two Advanced Backcross Populations in Rice. Rice, 2020, 13, 31.	4.0	14
41	Genetic dissection of large grain shape in rice cultivar â€~Nanyangzhan' and validation of a grain thickness QTL (qGT3.1) and a grain length QTL (qGL3.4). Molecular Breeding, 2017, 37, 1.	2.1	13
42	The coordination of OsbZIP72 and OsMYBS2 with reverse roles regulates the transcription of <i>OsPsbS1</i> in rice. New Phytologist, 2021, 229, 370-387.	7.3	12
43	Mapping and verification of grain shape QTLs based on high-throughput SNP markers in rice. Molecular Breeding, 2019, 39, 1.	2.1	10
44	Rice appearance quality. , 2019, , 371-383.		10
45	Genome-Wide Association Studies Reveal the Genetic Basis of Fertility Restoration of CMS-WA and CMS-HL in xian/indica and aus Accessions of Rice (Oryza sativa L.). Rice, 2020, 13, 11.	4.0	10
46	FLOURY ENDOSPERM19 encoding a class I glutamine amidotransferase affects grain quality in rice. Molecular Breeding, 2021, 41, 1.	2.1	10
47	Mapping and verification of grain shape QTLs based on an advanced backcross population in rice. PLoS ONE, 2017, 12, e0187553.	2.5	9
48	Integrated NIRS and QTL assays reveal minor mannose and galactose as contrast lignocellulose factors for biomass enzymatic saccharification in rice. Biotechnology for Biofuels, 2021, 14, 144.	6.2	8
49	Mapping of minor quantitative trait loci (<scp>QTL</scp> s) conferring fertility restoration of wild abortive cytoplasmic male sterility and <scp>QTL</scp> s conferring stigma exsertion in rice. Plant Breeding, 2014, 133, 722-727.	1.9	7
50	Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice. Gene, 2021, 770, 145353.	2.2	6
51	qFC6, a major gene for crude fat content and quality in rice. Theoretical and Applied Genetics, 2022, 135, 2675-2685.	3.6	5
52	Genetic dissection and validation of QTLs for grain shape and weight in rice and fine mapping of qGL1.3, a major QTL for grain length and weight. Molecular Breeding, 2019, 39, 1.	2.1	3
53	Chd7 is a negative regulator of zinc concentration in brown rice. Molecular Breeding, 2020, 40, 1.	2.1	3
54	Fine mapping of qWCR7, a grain chalkiness QTL in rice. Molecular Breeding, 2021, 41, 1.	2.1	3

Yuqing He

#	Article	IF	CITATIONS
55	Genomics-Based Breeding Technology. , 2013, , 329-348.		3
56	Fine Mapping of qWCR4, a Rice Chalkiness QTL Affecting Yield and Quality. Agronomy, 2022, 12, 706.	3.0	3
57	Mapping and evaluating quantitative trait loci for blast resistance under natural infection conditions using an advanced backcross population in rice. Euphytica, 2015, 204, 121-133.	1.2	2
58	Genetic dissection of vitamin E content in rice (Oryza sativa) grains using recombinant inbred lines derived from a cross between 'Zhenshan97B' and 'Nanyangzhan'. Plant Breeding, 2019, 138, 820-829.	1.9	2