
Dong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719896/publications.pdf Version: 2024-02-01

DONG WANG

#	Article	IF	CITATIONS
1	Recent Advances in the Synthesis of C2â€Functionalized Pyridines and Quinolines Using <i>N</i> â€Oxide Chemistry. Advanced Synthesis and Catalysis, 2021, 363, 2-39.	2.1	95
2	Natural Prenylchalconaringenins and Prenylnaringenins as Antidiabetic Agents: α-Glucosidase and α-Amylase Inhibition and in Vivo Antihyperglycemic and Antihyperlipidemic Effects. Journal of Agricultural and Food Chemistry, 2017, 65, 1574-1581.	2.4	86
3	Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity: Development of highly active 5,6-disubstituted derivatives. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3226-3230.	1.0	41
4	Prohibitin ligands: a growing armamentarium to tackle cancers, osteoporosis, inflammatory, cardiac and neurological diseases. Cellular and Molecular Life Sciences, 2020, 77, 3525-3546.	2.4	40
5	Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. European Journal of Medicinal Chemistry, 2016, 123, 365-378.	2.6	37
6	A practical and mild chlorination of fused heterocyclic N-oxides. Tetrahedron Letters, 2014, 55, 7130-7132.	0.7	32
7	Strategic C–C Bond-Forming Dearomatization of Pyridines and Quinolines. Organic Letters, 2019, 21, 4459-4463.	2.4	30
8	Strategic Approach to 8-Azacoumarins. Organic Letters, 2017, 19, 984-987.	2.4	28
9	Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells. European Journal of Medicinal Chemistry, 2018, 155, 880-888.	2.6	28
10	A General and Efficient Synthesis of 2â€Pyridones, 2â€Quinolinones, and 1â€Isoquinolinones from Azine <i>N</i> â€Oxides. Asian Journal of Organic Chemistry, 2016, 5, 1442-1446.	1.3	27
11	A highly practical and convenient halogenation of fused heterocyclic N-oxides. Tetrahedron, 2016, 72, 5762-5768.	1.0	27
12	Exploring the pH dependence of viologen reduction by α-carbon radicals derived from Hcy and Cys. Chemical Communications, 2009, , 1876.	2.2	26
13	Access to 8-Azachromones via Activation of C–H in <i>N</i> -Oxides. Journal of Organic Chemistry, 2017, 82, 11275-11287.	1.7	21
14	Metal- and base-free regioselective thiolation of the methyl C(sp ³)–H bond in 2-picoline <i>N</i> -oxides. Green Chemistry, 2019, 21, 157-163.	4.6	21
15	One-Carbon Bridge Stereocontrol in Robinson Annulations Leading to Bicyclo[3.3.1]nonanes. Organic Letters, 2010, 12, 1232-1235.	2.4	15
16	One-Pot Selective Saturation and Functionalization of Heteroaromatics Leading to Dihydropyridines and Dihydroquinolines. Journal of Organic Chemistry, 2020, 85, 5027-5037.	1.7	13
17	SFPH proteins as therapeutic targets for a myriad of diseases. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127600.	1.0	12
18	Access to Furo[2,3―b]pyridines by Transitionâ€Metalâ€Free Intramolecular Cyclization of C3â€substituted Pyridine N â€oxides. Asian Journal of Organic Chemistry, 2018, 7, 879-882.	1.3	10

DONG WANG

#	Article	IF	CITATIONS
19	Catalyst-free three-component synthesis of highly functionalized 2,3-dihydropyrroles. Green Chemistry, 2018, 20, 2775-2780.	4.6	10
20	Transition-metal-free access to 7-azaindoles. Tetrahedron, 2018, 74, 4100-4110.	1.0	10
21	Recent advances in the synthesis of 2,3-dihydropyrroles. Chemical Communications, 2020, 56, 5584-5592.	2.2	10
22	The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. Journal of Biological Chemistry, 2020, 295, 9855-9867.	1.6	9
23	A Oneâ€Pot Dearomative Approach to C4â€Alkylated Tetrahydropyridines and Tetrahydroquinolines. Asian Journal of Organic Chemistry, 2020, 9, 1571-1575.	1.3	8
24	A facile approach to tricyclo[6.4.0.04,9]-dodecane framework. Chinese Chemical Letters, 2015, 26, 238-242.	4.8	6
25	Accessing 1,8â€Naphthyridones by Metalâ€Free Regioselective Amination of Pyridine N â€oxides/Acidâ€Mediated Cyclization. Advanced Synthesis and Catalysis, 2020, 362, 3841-3845.	2.1	6
26	Stereoselective Four-Component Synthesis of Functionalized 2,3-Dihydro-4-Nitropyrroles. Frontiers in Chemistry, 2019, 7, 810.	1.8	5
27	Transitionâ€Metalâ€Free Regioselective Direct C2, C4 Difunctionalization and C2, C4, C6 Trifunctionalization of Pyridines. Advanced Synthesis and Catalysis, 2022, 364, 2720-2728.	2.1	5
28	Scalable synthesis of a tetrasubstituted 7-azabenzofuran as a key intermediate for a class of potent HCV NS5B inhibitors. Tetrahedron, 2020, 76, 131642.	1.0	4
29	Rapid Generation of Tetrahydropyridines and Tetrahydroquinolines by Dearomative Cyanation/Grignard Addition. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
30	Facile and Efficient Synthesis of Tri―and Tetrasubstituted 7â€Azabenzofuran Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 749-752.	1.3	2
31	Mechanism and origin of stereoselectivity in Robinson annulations leading to bicyclo[3.3.1]nonanes: a rare Curtin–Hammet scenario. Journal of Physical Organic Chemistry, 2017, 30, e3595.	0.9	1
32	Flavaglines: Discovery From Plants Used in Traditional Chinese Medicine, Synthesis and Drug Development against Cancer and Immune Disorders. Current Chinese Chemistry, 2021, 01, .	0.3	0