
jinliang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3142.	5.2	130
2	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 14700.	5.2	107
3	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3163.	5.2	91
4	Gram-Scale production of Cu3P-Cu2O Janus nanoparticles into nitrogen and phosphorous doped porous carbon framework as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2022, 427, 130946.	6.6	88
5	Self-assembled superstructure of carbon-wrapped, single-crystalline Cu3P porous nanosheets: One-step synthesis and enhanced Li-ion battery anode performance. Energy Storage Materials, 2018, 15, 75-81.	9.5	75
6	Three-dimensional, hetero-structured, Cu ₃ P@C nanosheets with excellent cycling stability as Na-ion battery anode material. Journal of Materials Chemistry A, 2019, 7, 16999-17007.	5.2	71
7	MoP-Mo2C quantum dot heterostructures uniformly hosted on a heteroatom-doped 3D porous carbon sheet network as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Engineering Journal, 2022, 431, 133719.	6.6	64
8	One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 15448-15453.	5.2	54
9	In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries. Nano Research, 2018, 11, 1731-1743.	5.8	45
10	A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation. Journal of Power Sources, 2015, 275, 279-283.	4.0	44
11	Ultrahigh capacity and superior stability of three-dimensional porous graphene networks containing in situ grown carbon nanotube clusters as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 7595-7602.	5.2	42
12	MnS@N,S Coâ€Doped Carbon Core/Shell Nanocubes: Sulfurâ€Bridged Bonds Enhanced Naâ€Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. Small, 2020, 16, e2003001.	5.2	42
13	Facile synthesis of boron and nitrogen-dual-doped graphene sheets anchored platinum nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2016, 194, 276-282.	2.6	41
14	Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochimica Acta, 2015, 158, 374-382.	2.6	40
15	Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14155-14162.	5.2	32
16	Synthesis and characterization of activated 3D graphene via catalytic growth and chemical activation for electrochemical energy storage in supercapacitors. Electrochimica Acta, 2019, 324, 134878.	2.6	32
17	A facile and cost effective synthesis of nitrogen and fluorine Co-doped porous carbon for high performance Sodium ion battery anode material. Journal of Power Sources, 2020, 448, 227568.	4.0	30
18	A novel boron and nitrogen co-doped three-dimensional porous graphene sheet framework as high performance Li-ion battery anode material. Inorganic Chemistry Communication, 2018, 96, 159-164.	1.8	29

JINLIANG ZHU

#	Article	IF	CITATIONS
19	Facile synthesis of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation. Catalysis Science and Technology, 2017, 7, 5974-5981.	2.1	28
20	Self-Assembled Nanofiber Networks of Well-Separated B and N Codoped Carbon as Pt Supports for Highly Efficient and Stable Oxygen Reduction Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 660-668.	3.2	26
21	One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting. Chemical Engineering Journal, 2022, 428, 131190.	6.6	26
22	Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (MÂ=ÂCo, Ni) nanoflowers. Journal of Colloid and Interface Science, 2022, 607, 1411-1423.	5.0	26
23	One-pot synthesis of Pd nanoparticles on ultrahigh surface area 3D porous carbon as hydrogen storage materials. International Journal of Hydrogen Energy, 2014, 39, 14843-14850.	3.8	25
24	One-dimensional core–shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chemical Science, 2021, 12, 15054-15060.	3.7	23
25	Cu ₂ Sâ€Cu ₃ P Nanowire Arrays Selfâ€Supported on Copper Foam as Boosting Electrocatalysts for Hydrogen Evolution. Energy Technology, 2019, 7, 1800993.	1.8	20
26	Construction of submicron-sized LiFe0.4Mn0.6PO4/C enwrapped into graphene framework for advanced Li-storage. Carbon, 2020, 169, 55-64.	5.4	18
27	Chelate resin self-assembled quaternary Co–N–P–C catalyst for oxygen reduction reaction. RSC Advances, 2013, 3, 14686.	1.7	17
28	Simultaneous removal of Zn2+ and p-nitrophenol from wastewater using nanocomposites of montmorillonite with alkyl-ammonium and complexant. Environmental Research, 2021, 201, 111496.	3.7	16
29	Hierarchical lead grid for highly stable oxygen evolution in acidic water at high temperature. Journal of Power Sources, 2021, 493, 229635.	4.0	15
30	The Effects of Pore Size on Electrical Performance in Lithium-Thionyl Chloride Batteries. Frontiers in Materials, 2019, 6, .	1.2	13
31	Ce ₂ O ₂ S anchored on graphitized carbon with tunable architectures as a new promising anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10026-10030.	5.2	10
32	Porous nanosheets of Cu ₃ P@N,P co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst. Sustainable Energy and Fuels, 2021, 5, 2451-2457.	2.5	10
33	Leaching characteristics and stabilization of heavy metals in tin-polymetallic tailings by sodium diethyl dithiocarbamate intercalated montmorillonite (DDTC-Mt). Journal of Cleaner Production, 2022, 344, 131041.	4.6	10
34	Advances on Nickel-Based Electrode Materials for Secondary Battery Systems: A Review. ACS Applied Energy Materials, 2022, 5, 9189-9213.	2.5	9
35	Hierarchical hollow mixed metal sulfides microspheres assembly from NiS nanoparticles anchored on MoS2 nanosheets and coated with N-doped carbon for enhanced sodium storage. Journal of Alloys and Compounds, 2022, 895, 162594.	2.8	8
36	Ultrahighly nitrogen-doped hollow carbon spheres with hierarchical pores for highly reversible lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 320-328.	2.5	7

JINLIANG ZHU

#	Article	IF	CITATIONS
37	Cobalt phosphide embedded in a 3D carbon frame as a sulfur carrier for high-performance lithium-sulfur batteries. Journal of Electroanalytical Chemistry, 2022, 912, 116202.	1.9	7
38	Preparation and application of granular bentonite-eggshell composites for heavy metal removal. Journal of Porous Materials, 2022, 29, 817-826.	1.3	7
39	Self-assembled and well separated B andÂN co-doped hierarchical carbon structures as high-capacity, ultra-stable, LIB anode materials. Sustainable Energy and Fuels, 2019, 3, 478-487.	2.5	6
40	Application of Oxygen Reduction Catalysts. , 2021, , 215-254.		1
41	Synthesis, Characterization and Luminescence of Europium, Terbium Complexes of 1,1'-(Pyridin-2,6-Diyl) Bis-3-P-Tolylpropane-1,3-Dione. Advanced Materials Research, 2011, 306-307, 228-233.	0.3	0