Jie Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4719820/jie-xu-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

135 6,130 40 76 g-index

148 7,893 6.8 7.1 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
135	Optimized Power Control Design for Over-the-Air Federated Edge Learning. <i>IEEE Journal on Selected Areas in Communications</i> , 2022 , 40, 342-358	14.2	7
134	Transmission Power Control for Over-the-Air Federated Averaging at Network Edge. <i>IEEE Journal on Selected Areas in Communications</i> , 2022 , 1-1	14.2	4
133	Cellular-Connected UAV with Adaptive Air-to-Ground Interference Cancellation and Trajectory Optimization. <i>IEEE Communications Letters</i> , 2022 , 1-1	3.8	O
132	Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond. <i>IEEE Journal on Selected Areas in Communications</i> , 2022 , 1-1	14.2	49
131	Guest Editorial Special Issue on Integrated Sensing and Communication P art I. <i>IEEE Journal on Selected Areas in Communications</i> , 2022 , 40, 1723-1727	14.2	
130	User Association and Resource Allocation for MEC-Enabled IoT Networks. <i>IEEE Transactions on Wireless Communications</i> , 2022 , 1-1	9.6	
129	Cooperative Interference Management for Over-the-Air Computation Networks. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 2634-2651	9.6	9
128	Hybrid Beamforming for Massive MIMO Over-the-Air Computation. <i>IEEE Transactions on Communications</i> , 2021 , 69, 2737-2751	6.9	8
127	Resource Rationing for Wireless Federated Learning: Concept, Benefits, and Challenges. <i>IEEE Communications Magazine</i> , 2021 , 59, 82-87	9.1	7
126	Unconditionally positivity preserving and energy dissipative schemes for PoissonNernstPlanck equations. <i>Numerische Mathematik</i> , 2021 , 148, 671-697	2.2	3
125	Optimized Power Control for Over-the-Air Federated Edge Learning 2021,		1
124	Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 1105-1121	9.6	24
123	Time-Division Energy Beamforming for Multiuser Wireless Power Transfer With Non-Linear Energy Harvesting. <i>IEEE Wireless Communications Letters</i> , 2021 , 10, 53-57	5.9	6
122	UAV-Enabled Data Collection for Wireless Sensor Networks with Distributed Beamforming. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 1-1	9.6	7
121	User Grouping and Reflective Beamforming for IRS-Aided URLLC. <i>IEEE Wireless Communications Letters</i> , 2021 , 1-1	5.9	4
120	A survey of prototype and experiment for UAV communications. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	12
119	Max-Min Fairness in IRS-Aided Multi-Cell MISO Systems With Joint Transmit and Reflective Beamforming. <i>IEEE Transactions on Wireless Communications</i> , 2021 , 20, 1379-1393	9.6	42

(2019-2021)

118	Over-the-Air Computing for Wireless Data Aggregation in Massive IoT. <i>IEEE Wireless Communications</i> , 2021 , 28, 57-65	13.4	19
117	A Comprehensive Overview on 5G-and-Beyond Networks With UAVs: From Communications to Sensing and Intelligence. <i>IEEE Journal on Selected Areas in Communications</i> , 2021 , 39, 2912-2945	14.2	51
116	UAV-Enabled Wireless Power Transfer: A Tutorial Overview. <i>IEEE Transactions on Green Communications and Networking</i> , 2021 , 1-1	4	8
115	General liquid-crystal theory for anisotropically shaped molecules: Symmetry, orientational order parameters, and system free energy. <i>Physical Review E</i> , 2020 , 102, 062701	2.4	1
114	Common Throughput Maximization for UAV-Enabled Interference Channel With Wireless Powered Communications. <i>IEEE Transactions on Communications</i> , 2020 , 68, 3197-3212	6.9	36
113	Optimal Energy Allocation and Task Offloading Policy for Wireless Powered Mobile Edge Computing Systems. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 2443-2459	9.6	74
112	An Identity Management and Authentication Scheme Based on Redactable Blockchain for Mobile Networks. <i>IEEE Transactions on Vehicular Technology</i> , 2020 , 69, 6688-6698	6.8	39
111	Optimized Amplify-and-Forward Relaying for Hierarchical Over-the-Air Computation 2020,		4
110	Radio-Map-Based Robust Positioning Optimization for UAV-Enabled Wireless Power Transfer. <i>IEEE Wireless Communications Letters</i> , 2020 , 9, 179-183	5.9	14
109	Fundamental Rate Limits of UAV-Enabled Multiple Access Channel With Trajectory Optimization. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 458-474	9.6	31
108	2020,		14
107	. IEEE Transactions on Wireless Communications, 2020 , 19, 7498-7513	9.6	44
106	Online Maneuver Design for UAV-Enabled NOMA Systems via Reinforcement Learning 2020,		9
105	Joint 3D Maneuver and Power Adaptation for Secure UAV Communication With CoMP Reception. <i>IEEE Transactions on Wireless Communications</i> , 2020 , 19, 6992-7006	9.6	13
104	Real-Time Resource Allocation for Wireless Powered Multiuser Mobile Edge Computing With Energy and Task Causality. <i>IEEE Transactions on Communications</i> , 2020 , 68, 7140-7155	6.9	19
103	Joint Transmit and Reflective Beamforming Design for IRS-Assisted Multiuser MISO SWIPT Systems 2020 ,		29
102	UAV-Enabled Wireless Power Transfer 2020 , 399-416		0
101	Cognitive UAV Communication via Joint Maneuver and Power Control. <i>IEEE Transactions on Communications</i> , 2019 , 67, 7872-7888	6.9	49

100	Optimal Resource Allocation for Wireless Powered Mobile Edge Computing with Dynamic Task Arrivals 2019 ,		15
99	Optimal Task Offloading Scheduling for Energy Efficient D2D Cooperative Computing. <i>IEEE Communications Letters</i> , 2019 , 23, 1816-1820	3.8	14
98	Positioning Optimization for Sum-Rate Maximization in UAV-Enabled Interference Channel. <i>IEEE Signal Processing Letters</i> , 2019 , 26, 1466-1470	3.2	11
97	Joint Power and Time Allocation for NOMA M EC Offloading. <i>IEEE Transactions on Vehicular Technology</i> , 2019 , 68, 6207-6211	6.8	128
96	Energy Minimization for Wireless Communication With Rotary-Wing UAV. <i>IEEE Transactions on Wireless Communications</i> , 2019 , 18, 2329-2345	9.6	507
95	Joint Task Assignment and Resource Allocation for D2D-Enabled Mobile-Edge Computing. <i>IEEE Transactions on Communications</i> , 2019 , 67, 4193-4207	6.9	91
94	Exploiting Physical-Layer Security for Multiuser Multicarrier Computation Offloading. <i>IEEE Wireless Communications Letters</i> , 2019 , 8, 9-12	5.9	43
93	AnFRA: Anonymous and Fast Roaming Authentication for Space Information Network. <i>IEEE Transactions on Information Forensics and Security</i> , 2019 , 14, 486-497	8	32
92	Secrecy Transmission in Large-Scale UAV-Enabled Wireless Networks. <i>IEEE Transactions on Communications</i> , 2019 , 67, 7656-7671	6.9	17
91	Optimal 1D Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer. <i>IEEE Transactions on Communications</i> , 2019 , 67, 5674-5688	6.9	55
90	Secrecy Transmission Capacity of Large-Scale UAV-Enabled Wireless Networks 2019,		4
89	Healthchain: A Blockchain-Based Privacy Preserving Scheme for Large-Scale Health Data. <i>IEEE</i> Internet of Things Journal, 2019 , 6, 8770-8781	10.7	133
88	Optimal Power Control for Over-the-Air Computation 2019,		6
87	3D Trajectory Optimization for Secure UAV Communication with CoMP Reception 2019 ,		6
86	2019,		1
85	Secure UAV Communication With Cooperative Jamming and Trajectory Control. <i>IEEE Communications Letters</i> , 2019 , 23, 286-289	3.8	78
84	Multi-Antenna NOMA for Computation Offloading in Multiuser Mobile Edge Computing Systems. <i>IEEE Transactions on Communications</i> , 2019 , 67, 2450-2463	6.9	122
83	A Generic Receiver Architecture for MIMO Wireless Power Transfer With Nonlinear Energy Harvesting. <i>IEEE Signal Processing Letters</i> , 2019 , 26, 312-316	3.2	28

(2018-2019)

82	. IEEE Internet of Things Journal, 2019 , 6, 4188-4200	10.7	132
81	Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 1690-1703	10.7	178
80	Exploiting Interference for Secrecy Wireless Information and Power Transfer. <i>IEEE Wireless Communications</i> , 2018 , 25, 133-139	13.4	12
79	Design and Analysis of Relay-Selection Strategies for Two-Way Relay Network-Coded DCSK Systems. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 1258-1271	6.8	42
78	Joint Offloading and Computing Optimization in Wireless Powered Mobile-Edge Computing Systems. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 1784-1797	9.6	469
77	. IEEE Transactions on Vehicular Technology, 2018 , 67, 1331-1346	6.8	61
76	Transmit Optimization for Symbol-Level Spoofing. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 41-55	9.6	12
75	PSAP: Pseudonym-Based Secure Authentication Protocol for NFC Applications. <i>IEEE Transactions on Consumer Electronics</i> , 2018 , 64, 83-91	4.8	16
74	Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks - Invited Paper 2018 ,		9
73	Throughput Maximization for Laser-Powered UAV Wireless Communication Systems 2018,		28
73 72	Throughput Maximization for Laser-Powered UAV Wireless Communication Systems 2018, UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018,		28 5
		14.2	
	UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018 ,	14.2	5
72 71	UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018, . IEEE Journal on Selected Areas in Communications, 2018, 36, 1955-1971	14.2	5
72 71 70	UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018, . IEEE Journal on Selected Areas in Communications, 2018, 36, 1955-1971 Transmit beamforming for simultaneous wireless information and power transfer 2018, 479-506 Optimal Computation and Spectrum Resource Sharing in Cooperative Mobile Edge Computing	14.2	5 130 1
72 71 70 69	UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018, . IEEE Journal on Selected Areas in Communications, 2018, 36, 1955-1971 Transmit beamforming for simultaneous wireless information and power transfer 2018, 479-506 Optimal Computation and Spectrum Resource Sharing in Cooperative Mobile Edge Computing Systems: (Invited Paper) 2018, Cooperative Trajectory Design and Resource Allocation for a Two-UAV Two-User Wireless Powered	14.2	5 130 1
72 71 70 69 68	UAV-Enabled Broadcast Channel: Trajectory Design and Capacity Characterization 2018, . IEEE Journal on Selected Areas in Communications, 2018, 36, 1955-1971 Transmit beamforming for simultaneous wireless information and power transfer 2018, 479-506 Optimal Computation and Spectrum Resource Sharing in Cooperative Mobile Edge Computing Systems: (Invited Paper) 2018, Cooperative Trajectory Design and Resource Allocation for a Two-UAV Two-User Wireless Powered Communication System 2018,	14.2	5130135

64	UAV-Enabled Cellular Networks with Multi-Hop Backhauls: Placement optimization and Wireless Resource Allocation 2018 ,		10
63	Capacity of UAV-Enabled Multicast Channel: Joint Trajectory Design and Power Allocation 2018,		17
62	Power Allocation for Point-to-Point Energy Harvesting Channels 2018 , 5-73		
61	Cost-Aware Design for Energy Harvesting Powered Cellular Networks 2018 , 203-238		
60	Wireless-Powered Mobile Edge Computing Systems 2018 , 253-271		
59	Placement Optimization for UAV-Enabled Wireless Networks with Multi-Hop Backhauls. <i>Journal of Communications and Information Networks</i> , 2018 , 3, 64-73		28
58	IEEE ACCESS Special Section Editorial: Energy Efficient Wireless Communications With Energy Harvesting and Wireless Power Transfer. <i>IEEE Access</i> , 2018 , 6, 72041-72045	3.5	
57	Joint Task Assignment and Wireless Resource Allocation for Cooperative Mobile-Edge Computing 2018 ,		27
56	UAV-Enabled Wireless Power Transfer with Directional Antenna: A Two-User Case (Invited Paper) 2018 ,		25
55	Mobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory Optimization 2018 ,		74
54	Cognitive UAV Communication via Joint Trajectory and Power Control 2018,		26
53	Joint computation and communication cooperation for mobile edge computing 2018,		33
52	UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization. <i>IEEE Transactions on Wireless Communications</i> , 2018 , 17, 5092-5106	9.6	295
51	Heterogeneous access class barring with QoS guarantee in machine-type communications. <i>Transactions on Emerging Telecommunications Technologies</i> , 2017 , 28, e2959	1.9	5
50	Fundamental Rate Limits of Physical Layer Spoofing. IEEE Wireless Communications Letters, 2017, 6, 154	-\$57	13
49	Adaptive Mode Switching for Cognitive Wireless Powered Communication Systems. <i>IEEE Wireless Communications Letters</i> , 2017 , 6, 386-389	5.9	6
48	Proactive Eavesdropping via Cognitive Jamming in Fading Channels. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2790-2806	9.6	88
47	Comment on D ptimal Precoding for a QoS Optimization Problem in Two-User MISO-NOMA Downlink[] <i>IEEE Communications Letters</i> , 2017 , 21, 2109-2111	3.8	4

(2015-2017)

46	Surveillance and Intervention of Infrastructure-Free Mobile Communications: A New Wireless Security Paradigm. <i>IEEE Wireless Communications</i> , 2017 , 24, 152-159	13.4	95
45	Joint offloading and computing optimization in wireless powered mobile-edge computing systems 2017 ,		40
44	Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing. <i>IEEE Transactions on Cognitive Communications and Networking</i> , 2017 , 3, 361-373	6.6	225
43	Optimized Multiuser Computation Offloading with Multi-Antenna NOMA 2017 ,		58
42	Wireless surveillance of two-hop communications : (Invited paper) 2017,		2
41	Proactive Eavesdropping via Jamming over HARQ-Based Communications 2017,		14
40	2017,		54
39	UAV-enabled multiuser wireless power transfer: Trajectory design and energy optimization 2017,		33
38	Cooperative Energy Trading in CoMP Systems Powered by Smart Grids. <i>IEEE Transactions on Vehicular Technology</i> , 2016 , 65, 2142-2153	6.8	56
37	Proactive Eavesdropping Via Jamming for Rate Maximization Over Rayleigh Fading Channels. <i>IEEE Wireless Communications Letters</i> , 2016 , 5, 80-83	5.9	110
36	A General Design Framework for MIMO Wireless Energy Transfer With Limited Feedback. <i>IEEE Transactions on Signal Processing</i> , 2016 , 64, 2475-2488	4.8	72
35	Energy Group Buying With Loading Sharing for Green Cellular Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2016 , 34, 786-799	14.2	38
34	Harnessing Self-Interference in Full-Duplex Relaying: An Analog Filter-and-Forward Approach 2016 ,		3
33	Proactive eavesdropping via cognitive jamming in fading channels 2016 ,		10
32	Wireless Powered Sensor Networks: Collaborative Energy Beamforming Considering Sensing and Circuit Power Consumption. <i>IEEE Wireless Communications Letters</i> , 2016 , 5, 344-347	5.9	25
31	Multiuser MIMO Wireless Energy Transfer With Coexisting Opportunistic Communication. <i>IEEE Wireless Communications Letters</i> , 2015 , 4, 273-276	5.9	35
30	Cost-aware green cellular networks with energy and communication cooperation 2015, 53, 257-263		66
29	A general utility optimization framework for energy-harvesting-based wireless communications 2015 , 53, 79-85		50

28	Capacity Region of MISO Broadcast Channel for Simultaneous Wireless Information and Power Transfer. <i>IEEE Transactions on Communications</i> , 2015 , 63, 3856-3868	6.9	27
27	Capacity region of MISO broadcast channel with SWIPT 2015 ,		2
26	Real-Time Energy Storage Management for Renewable Integration in Microgrid: An Off-Line Optimization Approach. <i>IEEE Transactions on Smart Grid</i> , 2015 , 6, 124-134	10.7	256
25	CoMP Meets Smart Grid: A New Communication and Energy Cooperation Paradigm. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2476-2488	6.8	87
24	Multiantenna Wireless Powered Communication With Cochannel Energy and Information Transfer. <i>IEEE Communications Letters</i> , 2015 , 19, 2266-2269	3.8	29
23	Throughput Optimal Policies for Energy Harvesting Wireless Transmitters with Non-Ideal Circuit Power. <i>IEEE Journal on Selected Areas in Communications</i> , 2014 , 32, 322-332	14.2	171
22	Energy-efficient scheduling with individual packet delay constraints and non-ideal circuit power. <i>Journal of Communications and Networks</i> , 2014 , 16, 36-44	4.1	14
21	Energy Beamforming With One-Bit Feedback. <i>IEEE Transactions on Signal Processing</i> , 2014 , 62, 5370-538	81 4.8	138
20	Joint Energy and Spectrum Cooperation for Cellular Communication Systems. <i>IEEE Transactions on Communications</i> , 2014 , 62, 3678-3691	6.9	62
19	Energy beamforming with one-bit feedback 2014 ,		11
18	. IEEE Transactions on Signal Processing, 2014 , 62, 4798-4810	4.8	326
17	Cooperative energy trading in CoMP systems powered by smart grids 2014,		14
16	Optimal energy and spectrum sharing for cooperative cellular systems 2014,		3
15	Energy Efficiency Optimization for MIMO Broadcast Channels. <i>IEEE Transactions on Wireless Communications</i> , 2013 , 12, 690-701	9.6	160
14	Energy efficient downlink MIMO transmission with linear precoding. <i>Science China Information Sciences</i> , 2013 , 56, 1-12	3.4	3
13	Robust ARQ Precoder Optimization for AF MIMO Relay Systems with Channel Estimation Errors. <i>IEEE Transactions on Wireless Communications</i> , 2013 , 12, 5236-5247	9.6	4
12	Energy Efficiency optimization for two-way relay channels 2013,		2
11	Progressive Linear Precoder Optimization for ARQ Packet Retransmissions in Nonregenerative MIMO Relay Systems. <i>IEEE Transactions on Signal Processing</i> , 2013 , 61, 68-81	4.8	5

LIST OF PUBLICATIONS

Energy efficient coordinated beamforming for multi-cell MISO systems 2013, 10 5 Multiuser MISO beamforming for simultaneous wireless information and power transfer 2013, 9 41 An energy efficient semi-static power control and link adaptation scheme in UMTS HSDPA. Eurasip 8 3.2 2 Journal on Wireless Communications and Networking, 2012, 2012, Energy efficient iterative waterfilling for the MIMO broadcasting channels 2012, Improving network energy efficiency through cooperative idling in the multi-cell systems. Eurasip 6 6 3.2 Journal on Wireless Communications and Networking, 2011, 2011, Improving energy efficiency through multimode transmission in the downlink MIMO systems. 3.2 Eurasip Journal on Wireless Communications and Networking, 2011, 2011, Robust Multimode Selection in the Downlink Multiuser MIMO Channels with Delayed CSIT 2011, 4 Area Power Consumption in a Single Cell Assisted by Relays 2010, 11 A Linear Processing Scheme in Multiuser Downlink MIMO Broadcasting Channel with Fixed Relays. 0.5 1 IEICE Transactions on Communications, 2009, E92-B, 679-682 Cost-Aware Cellular Networks Powered by Smart Grids and Energy Harvesting271-288