Shanan S Tobe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719715/publications.pdf

Version: 2024-02-01

		516710	377865
53	1,313	16	34
papers	citations	h-index	g-index
	60	60	1070
62	62	62	1378
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of a multiplex, PCR-based genotyping assay for African and Asian elephants for forensic purposes. International Journal of Legal Medicine, 2020, 134, 55-62.	2.2	6
2	ELEquant: a developmental framework and validation of forensic and conservation real-time PCR assays. Molecular Biology Reports, 2019, 46, 2093-2100.	2.3	8
3	Using synthetic oligonucleotides as standards in probe-based qPCR. BioTechniques, 2018, 64, 177-179.	1.8	55
4	Singleplex quantitative real-time PCR for the assessment of human mitochondrial DNA quantity and quality. Forensic Science, Medicine, and Pathology, 2018, 14, 70-75.	1.4	14
5	An assessment of the genetic diversity of the founders of the European captive population of Asian lion (Panthera leo leo), using microsatellite markers and studbook analysis. Mammalian Biology, 2018, 88, 138-143.	1.5	9
6	Microbial micropatches within microbial hotspots. PLoS ONE, 2018, 13, e0197224.	2.5	6
7	Southern South Australian groundwater microbe diversity. FEMS Microbiology Ecology, 2018, 94, .	2.7	9
8	Hostâ€specific associations affect the microbiome of <i>Philornis downsi</i> , an introduced parasite to the Galápagos Islands. Molecular Ecology, 2017, 26, 4644-4656.	3.9	32
9	A proof of principal study on the use of direct PCR of semen and spermatozoa and development of a differential isolation protocol for use in cases of alleged sexual assault. International Journal of Legal Medicine, 2017, 131, 87-94.	2.2	7
10	Complete Genome Sequences of the Endophytic <i>Streptomyces</i> sp. Strains LUP30 and LUP47B, Isolated from Lucerne Plants. Genome Announcements, 2017, 5, .	0.8	7
11	Microbial composition analyses by 16S rRNA sequencing: A proof of concept approach to provenance determination of archaeological ochre. PLoS ONE, 2017, 12, e0185252.	2.5	13
12	Optimization of Diamond Nucleic Acid Dye for quantitative PCR. BioTechniques, 2016, 61, 183-189.	1.8	11
13	Complete Genome Sequences of the Endophytic <i>Streptomyces</i> Strains EN16, EN23, and EN27, Isolated from Wheat Plants. Genome Announcements, 2016, 4, .	0.8	7
14	Stygofauna enhance prokaryotic transport in groundwater ecosystems. Scientific Reports, 2016, 6, 32738.	3.3	23
15	Microscale distributions of freshwater planktonic viruses and prokaryotes are patchy and taxonomically distinct. Aquatic Microbial Ecology, 2016, 77, 65-77.	1.8	6
16	Duration of in situ fluorescent signals within hairs follicles. Forensic Science International: Genetics Supplement Series, 2015, 5, e175-e176.	0.3	7
17	Successful direct STR amplification of hair follicles after nuclear staining. Forensic Science International: Genetics Supplement Series, 2015, 5, e65-e66.	0.3	13
18	Effect of nucleic acid binding dyes on DNA extraction, amplification, and STR typing. Electrophoresis, 2015, 36, 2561-2568.	2.4	16

#	Article	IF	Citations
19	Molecular identification of python species: Development and validation of a novel assay for forensic investigations. Forensic Science International: Genetics, 2015, 16, 64-70.	3.1	7
20	Properties of nucleic acid staining dyes used in gel electrophoresis. Electrophoresis, 2015, 36, 941-944.	2.4	61
21	An assessment of the subjectivity of sperm scoring. Forensic Science International, 2015, 251, 83-86.	2.2	8
22	Finding DNA: Using fluorescent in situ detection. Forensic Science International: Genetics Supplement Series, 2015, 5, e501-e502.	0.3	25
23	A novel forensic DNA profiling technique for protected species. Forensic Science International: Genetics Supplement Series, 2015, 5, e258-e260.	0.3	2
24	Sensitivity and specificity of presumptive tests for blood, saliva and semen. Forensic Science, Medicine, and Pathology, 2014, 10, 69-75.	1.4	45
25	Detection of DNA within fingermarks. Forensic Science International: Genetics Supplement Series, 2013, 4, e290-e291.	0.3	13
26	Recovery of human DNA profiles from poached deer remains part 2: Improved recovery protocol without the need for LCN analysis. Science and Justice - Journal of the Forensic Science Society, 2013, 53, 23-27.	2.1	3
27	Identification multiplex assay of 19 terrestrial mammal species present in New Zealand. Electrophoresis, 2013, 34, 3370-3376.	2.4	15
28	The development and validation of a single SNaPshot multiplex for tiger species and subspecies identificationâ€"Implications for forensic purposes. Forensic Science International: Genetics, 2012, 6, 250-257.	3.1	31
29	The complete mitochondrial genome analysis of the tiger (Panthera tigris). Molecular Biology Reports, 2012, 39, 5745-5754.	2.3	18
30	Molecular analysis of botanical evidence by DNA thermal dissociation temperature. Forensic Science International: Genetics Supplement Series, 2011, 3, e257-e258.	0.3	0
31	Where does this tiger come from?—A robust molecular technique for simultaneous identification of endangered species and subspecies. Forensic Science International: Genetics Supplement Series, 2011, 3, e532-e533.	0.3	1
32	Assigning confidence to sequence comparisons for species identification: A detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. Forensic Science International: Genetics Supplement Series, 2011, 3, e246-e247.	0.3	2
33	A new assay for identifying endangered species in Traditional East Asian Medicine. Forensic Science International: Genetics Supplement Series, 2011, 3, e232-e233.	0.3	1
34	Tackling poaching: Recovery of human DNA profiles from deer remains. Forensic Science International: Genetics Supplement Series, 2011, 3, e265-e266.	0.3	0
35	Recovery of human DNA profiles from poached deer remains: A feasibility study. Science and Justice - Journal of the Forensic Science Society, 2011, 51, 190-195.	2.1	11
36	An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2011, 2, 2.	3.3	116

#	Article	IF	CITATIONS
37	DNA typing in wildlife crime: recent developments in species identification. Forensic Science, Medicine, and Pathology, 2010, 6, 195-206.	1.4	48
38	Reconstructing Mammalian Phylogenies: A Detailed Comparison of the Cytochrome b and Cytochrome Oxidase Subunit I Mitochondrial Genes. PLoS ONE, 2010, 5, e14156.	2.5	152
39	Generation of DNA profiles from fabrics without DNA extraction. Forensic Science International: Genetics, 2010, 4, 137-141.	3.1	94
40	Commentary on: Comparison of presumptive blood test kits including Hexagon OBTI. Journal of Forensic Sciences, 2009, 54, 239-239.	1.6	2
41	Cytochrome b or cytochrome c oxidase subunit I for mammalian species identificationâ€"An answer to the debate. Forensic Science International: Genetics Supplement Series, 2009, 2, 306-307.	0.3	26
42	Tiger species identification based on molecular approach. Forensic Science International: Genetics Supplement Series, 2009, 2, 310-312.	0.3	6
43	The use of mitochondrial DNA genes to identify closely related avian species. Forensic Science International: Genetics Supplement Series, 2009, 2, 275-277.	0.3	10
44	Identifying endangered species from degraded mixtures at low levels. Forensic Science International: Genetics Supplement Series, 2009, 2, 304-305.	0.3	8
45	Species Identification Using DNA Loci. International Forensic Science and Investigation Series, 2009, , 61-94.	0.0	10
46	A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome <i>b</i> gene. Electrophoresis, 2008, 29, 340-347.	2.4	88
47	A technique for the quantification of human and non-human mammalian mitochondrial DNA copy number in forensic and other mixtures. Forensic Science International: Genetics, 2008, 2, 249-256.	3.1	46
48	Quantification of trace amounts of human and non-human mitochondrial DNA (mtDNA) using SYBR Green and real time PCR. Forensic Science International: Genetics Supplement Series, 2008, 1, 71-73.	0.3	1
49	On the trial of tigers–tracking tiger in Traditional East Asian Medicine. Forensic Science International: Genetics Supplement Series, 2008, 1, 603-604.	0.3	5
50	A method to identify a large number of mammalian species in the UK from trace samples and mixtures without the use of sequencing. Forensic Science International: Genetics Supplement Series, 2008, 1, 625-627.	0.3	6
51	Evaluation of Six Presumptive Tests for Blood, Their Specificity, Sensitivity, and Effect on High Molecular-Weight DNA. Journal of Forensic Sciences, 2007, 52, 102-109.	1.6	174
52	Species identification of human and deer from mixed biological material. Forensic Science International, 2007, 169, 278-279.	2.2	9
53	Successful DNA typing of a drug positive urine sample from a race horse. Forensic Science International, 2007, 173, 85-86.	2.2	6