Julian Dailly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4719138/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimica Acta, 2010, 55, 5847-5853.	5.2	152
2	Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming. Applied Energy, 2015, 149, 161-175.	10.1	60
3	High performing BaCe0.8Zr0.1Y0.1O3-δSm0.5Sr0.5CoO3-δ based protonic ceramic fuel cell. Journal of Power Sources, 2017, 361, 221-226.	7.8	48
4	Electrochemical properties of perovskite and A2MO4-type oxides used as cathodes in protonic ceramic half cells. Journal of Solid State Electrochemistry, 2011, 15, 245-251.	2.5	44
5	BCY-based proton conducting ceramic cell: 1000Âh of long term testing in fuel cell application. Journal of Power Sources, 2013, 240, 323-327.	7.8	37
6	Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity. Solid State Ionics, 2017, 306, 69-75.	2.7	29
7	A2MO4+δOxides: Flexible Electrode Materials for Solid Oxide Cells. ECS Transactions, 2009, 25, 2537-2546.	0.5	27
8	Life cycle assessment of the manufacture and operation of solid oxide electrolyser components and stacks. International Journal of Hydrogen Energy, 2016, 41, 13786-13796.	7.1	26
9	Advanced Proton Conducting Ceramic Cell as Energy Storage Device. Journal of the Electrochemical Society, 2017, 164, F988-F994.	2.9	19
10	Catalytic steam reforming of methane over La0.8Sr0.2CrO3 based Ru catalysts. Catalysis Today, 2007, 128, 264-268.	4.4	18
11	Evaluation of proton conducting BCY10-based anode supported cells by co-pressing method: Up-scaling, performances and durability. Journal of Power Sources, 2014, 255, 302-307.	7.8	18
12	Elaboration of intermediate size planar proton conducting solid oxide cell by wet chemical routes: A way to industrialization. Solid State Ionics, 2015, 275, 97-100.	2.7	18
13	Intermediate Temperature Anodeâ€5upported Fuel Cell Based on BaCe _{0.9} Y _{0.1} O ₃ Electrolyte with Novel Pr ₂ NiO ₄ Cathode. Fuel Cells, 2010, 10, 166-173.	2.4	17
14	Sol–gel synthesis and characterization of barium (magnesium) aluminosilicate glass sealants for solid oxide fuel cells. Journal of Non-Crystalline Solids, 2011, 357, 3490-3494.	3.1	17
15	High-Temperature CO2 and H2O Electrolysis with an Electrolyte-Supported Solid Oxide Cell. ECS Transactions, 2011, 35, 2949-2956.	0.5	15
16	Advanced Proton Conducting Ceramic Cell as Energy Storage Device. ECS Transactions, 2017, 78, 3349-3363.	0.5	10
17	Hydrogen diffusion in high temperature proton conducting ceramics. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1430-1433.	1.4	9
18	Nanoparticles Infiltration into SOFC Cathode Backbones. ECS Transactions, 2017, 78, 1979-1991.	0.5	6

#	Article	IF	CITATIONS
19	Barium Borosilicate Sealing Classes Synthesized by a Sol–Gel Process: Chemical Interactions with a Stainless Steel and Gasâ€īghtness of a SOFC. Fuel Cells, 2014, 14, 1014-1021.	2.4	2
20	Synthesis and Characterizations of Barium Zirconate–Alkali Carbonate Composite Electrolytes for Intermediate Temperature Fuel Cells. Journal of Composites Science, 2021, 5, 183.	3.0	1