Vasilis Pagonis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the various-heating-rates method for evaluating the activation energies of thermoluminescence peaks. Radiation Measurements, 2022, 150, 106692.	0.7	4
2	Testing new analytical expression for dose response curves originating from the OTOR model. Journal of Luminescence, 2022, 244, 118747.	1.5	2
3	Overview of Luminescence Signals from Dosimetric Materials. , 2022, , 1-19.		0
4	OSL from Delocalized Transitions: Data Analysis. , 2022, , 247-283.		0
5	Dose Response of Dosimetric Materials: Models. , 2022, , 357-376.		0
6	ITL Signals: Models. , 2022, , 179-195.		0
7	ITL Signals: Data Analysis. , 2022, , 197-218.		0
8	Infrared Stimulated Luminescence Signals: Models. , 2022, , 285-303.		0
9	TL Signals fromÂDelocalized Transitions: Data Analysis. , 2022, , 83-118.		0
10	Time-Resolved Luminescence: Models. , 2022, , 321-338.		0
11	OSL from Delocalized Transitions: Models. , 2022, , 219-246.		0
12	Standardizing the computerized analysis and modeling of luminescence phenomena: New open-access codes in R and Python. Radiation Measurements, 2022, 153, 106730.	0.7	0
13	Implementation of expressions using Python in stimulated luminescence analysis. Radiation Measurements, 2022, 154, 106772.	0.7	0
14	Anomalous fading in thermoluminescence signal of ten different K-feldspar samples and correlation to structural state characteristics. Radiation Measurements, 2022, 155, 106789.	0.7	3
15	Simulation of the effect of resolution between thermoluminescence peaks on the initial rise method of analysis. Nuclear Instruments & Methods in Physics Research B, 2022, 524, 1-7.	0.6	2
16	Influence of scatter data and temperature lag on the analysis of thermoluminescence glow peak: A Monte Carlo simulation study. Applied Radiation and Isotopes, 2021, 167, 109405.	0.7	1
17	Luminescence. Use R!, 2021, , .	0.3	8
18	Thermoluminescence due to simultaneous recombination of two electrons into two-hole centers. Radiation Measurements, 2021, 141, 106521.	0.7	0

#	Article	IF	CITATIONS
19	Modelling the dependence of equivalent dose determined from a dose recovery test on preheating temperature: The intervention of shallow electron traps. Radiation Measurements, 2021, 142, 106566.	0.7	3
20	A model explaining the inability of exciting thermoluminescence (TL) peaks in certain low temperature ranges. Radiation Measurements, 2021, 145, 106610.	0.7	3
21	Simulating feldspar luminescence phenomena using R. Journal of Luminescence, 2021, 235, 117999.	1.5	4
22	Quantitative analysis of thermoluminescence signals of glass displays from mobile phones. Radiation Measurements, 2021, 146, 106614.	0.7	2
23	On the deconvolution of promptly measured luminescence signals in feldspars. Journal of Luminescence, 2021, 239, 118334.	1.5	10
24	Analysis and Modeling of TL Data. Use R!, 2021, , 21-69.	0.3	0
25	Introduction to Luminescence Signals and Models. Use R!, 2021, , 1-18.	0.3	Ο
26	Kinetic Monte Carlo Simulations. Use R!, 2021, , 261-273.	0.3	0
27	Analysis of Experimental OSL Data. Use R!, 2021, , 71-97.	0.3	Ο
28	Localized Transitions and Quantum Tunneling. Use R!, 2021, , 149-184.	0.3	0
29	Monte Carlo Simulations of Delocalized Transitions. Use R!, 2021, , 213-245.	0.3	Ο
30	Monte Carlo Simulations of Localized Transitions. Use R!, 2021, , 247-259.	0.3	0
31	Dose Response of Dosimetric Materials. Use R!, 2021, , 99-126.	0.3	Ο
32	Comprehensive Models for Feldspars. Use R!, 2021, , 309-333.	0.3	0
33	Localized Transitions: The LT and SLT Model. Use R!, 2021, , 185-209.	0.3	Ο
34	On the stochastic uncertainties of thermally and optically stimulated luminescence signals: A Monte Carlo approach. Journal of Luminescence, 2020, 219, 116945.	1.5	2
35	Superlinearity revisited: A new analytical equation for the dose response of defects in solids, using the Lambert W function. Journal of Luminescence, 2020, 227, 117553.	1.5	11
36	Competition between long time excitation and fading of thermoluminescence (TL) and optically stimulated luminescence (OSL). Radiation Measurements, 2020, 136, 106422.	0.7	7

#	Article	IF	CITATIONS
37	Sequential two-step optical stimulation in K-feldspars: Correlation among the luminescence signals and implications for modeling parameters. Journal of Luminescence, 2020, 226, 117425.	1.5	8
38	Simulation of thermoluminescence dose response in cluster systems with deep traps. Radiation Measurements, 2020, 134, 106307.	0.7	3
39	A Monte-Carlo study of the fading of TL and OSL signals in the presence of deep-level competitors. Radiation Measurements, 2020, 132, 106257.	0.7	3
40	Investigation of thermoluminescence processes during linear and isothermal heating of dosimetric materials. Journal of Luminescence, 2020, 222, 117142.	1.5	11
41	Quantum tunneling processes in feldspars: Using thermoluminescence signals in thermochronometry. Radiation Measurements, 2020, 134, 106325.	0.7	8
42	A new analytical equation for the dose response of dosimetric materials, based on the Lambert W function. Journal of Luminescence, 2020, 225, 117333.	1.5	18
43	Stimulated luminescence emission: From phenomenological models to master analytical equations. Applied Radiation and Isotopes, 2019, 153, 108797.	0.7	35
44	Correlation between isothermal Tl and Irsl in K-Feldspars of various types. Radiation Physics and Chemistry, 2019, 165, 108386.	1.4	8
45	Comprehensive analysis of thermoluminescence signals in MgB4O7:Dy,Na dosimeter. Journal of Luminescence, 2019, 213, 334-342.	1.5	19
46	Simulation of TL kinetics in complex trap cluster systems: Some new approaches. Radiation Measurements, 2019, 125, 78-84.	0.7	4
47	On the unchanging shape of thermoluminescence peaks in preheated feldspars: Implications for temperature sensing and thermochronometry. Radiation Measurements, 2019, 124, 19-28.	0.7	10
48	Thermoluminescence governed by the Auger-recombination process. Radiation Measurements, 2019, 124, 40-47.	0.7	3
49	On the resolution of overlapping peaks in complex thermoluminescence glow curves. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 913, 78-84.	0.7	12
50	Excited state luminescence signals from a random distribution of defects: A new Monte Carlo simulation approach for feldspar. Journal of Luminescence, 2019, 207, 266-272.	1.5	14
51	Recent Advances in the Theory of Quantum Tunneling for Luminescence Phenomena. , 2019, , 37-81.		1
52	On the half-life of luminescence signals in dosimetric applications: A unified presentation. Physica B: Condensed Matter, 2018, 539, 35-43.	1.3	4
53	Anomalous fading in TL, OSL and TA $\hat{a} \in$ OSL signals of Durango apatite for various grain size fractions; from micro to nano scale. Journal of Luminescence, 2018, 195, 216-224.	1.5	20
54	Thermoluminescence due to tunneling in nanodosimetric materials: A Monte Carlo study. Physica B: Condensed Matter, 2018, 531, 171-179.	1.3	11

#	Article	IF	CITATIONS
55	Thermoluminescence glow curves in preheated feldspar: A Monte Carlo study. Nuclear Instruments & Methods in Physics Research B, 2018, 436, 249-256.	0.6	4
56	Thermoluminescence associated with two-hole recombination centers. Radiation Measurements, 2018, 115, 1-6.	0.7	8
57	Localized transition models in luminescence: A reappraisal. Nuclear Instruments & Methods in Physics Research B, 2018, 432, 13-19.	0.6	11
58	An overview of recent developments in luminescence models with a focus on localized transitions. Radiation Measurements, 2017, 106, 3-12.	0.7	23
59	Thermoluminescence associated with two-electron traps. Radiation Measurements, 2017, 99, 10-17.	0.7	6
60	The influence of competition effects on the initial rise method during thermal stimulation of luminescence: A simulation study. Radiation Measurements, 2017, 100, 27-36.	0.7	19
61	Tunnelling recombination in conventional, post-infrared and post-infrared multi-elevated temperature IRSL signals in microcline K-feldspar. Journal of Luminescence, 2017, 188, 514-523.	1.5	23
62	Quartz radiofluorescence: a modelling approach. Journal of Luminescence, 2017, 186, 318-325.	1.5	12
63	Thermoluminescence glow curves in preheated feldspar samples: AnÂinterpretation based on random defect distributions. Radiation Measurements, 2017, 97, 20-27.	0.7	29
64	New expressions for half life, peak maximum temperature, activation energy and kinetic order of a thermoluminescence glow peak based on the Lambert W function. Radiation Measurements, 2017, 97, 28-34.	0.7	8
65	Sublinear dose dependence of thermoluminescence as a result of competition between electron and hole trapping centers. Radiation Measurements, 2017, 105, 54-61.	0.7	15
66	The effect of crystal size on tunneling phenomena in luminescent nanodosimetric materials. Nuclear Instruments & Methods in Physics Research B, 2017, 412, 198-206.	0.6	7
67	Can thermoluminescence be used to determine soil heating from a wildfire?. Radiation Measurements, 2017, 107, 119-127.	0.7	14
68	Quantum tunneling recombination in a system of randomly distributed trapped electrons and positive ions. Journal of Physics Condensed Matter, 2017, 29, 365701.	0.7	10
69	A model explaining the anomalous heating-rate effect in thermoluminescence as an inverse thermal quenching based on simultaneous thermal release of electrons and holes. Radiation Measurements, 2017, 106, 20-25.	0.7	29
70	Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. Journal of Luminescence, 2017, 181, 114-120.	1.5	16
71	Evaluated thermoluminescence trapping parameters–What do they really mean?. Radiation Measurements, 2016, 91, 21-27	0.7	60
72	On the intrinsic accuracy and precision of the standardised growth curve (SGC) and global-SGC (gSGC) methods for equivalent dose determination: A simulation study. Radiation Measurements, 2016, 94, 53-64.	0.7	20

#	Article	IF	CITATIONS
73	Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars. Physica B: Condensed Matter, 2016, 497, 78-85.	1.3	9
74	Reliability of single aliquot regenerative protocol (SAR) for dose estimation in quartz at different burial temperatures: A simulation study. Radiation Measurements, 2016, 91, 28-35.	0.7	4
75	Simulating comprehensive kinetic models for quartz luminescence using the R program KMS. Radiation Measurements, 2016, 86, 63-70.	0.7	13
76	Prompt isothermal decay of thermoluminescence in MgB4O7:Dy, Na and LiB4O7:Cu, In dosimeters. Radiation Measurements, 2016, 84, 15-25.	0.7	67
77	Influence of the infrared stimulation on the optically stimulated luminescence in four K-feldspar samples. Journal of Luminescence, 2016, 176, 32-39.	1.5	14
78	Time-resolved luminescence from quartz: An overview of contemporary developments and applications. Physica B: Condensed Matter, 2016, 481, 8-18.	1.3	20
79	Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins. Nuclear Instruments & Methods in Physics Research B, 2015, 359, 89-98.	0.6	41
80	Dating quartz near saturation – Simulations and application at archaeological sites in South Africa and South Carolina. Quaternary Geochronology, 2015, 30, 416-421.	0.6	14
81	Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiation Measurements, 2015, 81, 224-231.	0.7	66
82	Study of the stability of the TL and OSL signals. Radiation Measurements, 2015, 81, 192-197.	0.7	6
83	Time and dose-rate dependence of TL and OSL due to competition between excitation and fading. Radiation Measurements, 2015, 82, 115-121.	0.7	10
84	Mathematical aspects of ground state tunneling models in luminescence materials. Journal of Luminescence, 2015, 168, 137-144.	1.5	18
85	On the effect of optical and isothermal treatments on luminescence signals from feldspars. Radiation Measurements, 2015, 82, 93-101.	0.7	16
86	Monte Carlo simulations of TL and OSL in nanodosimetric materials and feldspars. Radiation Measurements, 2015, 81, 262-269.	0.7	13
87	Kinetic analysis of thermoluminescence glow curves in feldspar: evidence for a continuous distribution of energies. Geochronometria, 2014, 41, 168-177.	0.2	38
88	Thermal dependence of luminescence lifetimes and radioluminescence in quartz. Journal of Luminescence, 2014, 145, 38-48.	1.5	32
89	Spectral and kinetic analysis of thermoluminescence from manganiferous carbonatite. Journal of Luminescence, 2014, 145, 180-187.	1.5	25
90	Prompt isothermal decay of thermoluminescence in an apatite exhibiting strong anomalous fading. Nuclear Instruments & Methods in Physics Research B, 2014, 320, 57-63.	0.6	41

#	Article	IF	CITATIONS
91	The role of simulations in the study of thermoluminescence (TL). Radiation Measurements, 2014, 71, 8-14.	0.7	22
92	Monte Carlo simulations of luminescence processes under quasi-equilibrium (QE) conditions. Radiation Measurements, 2014, 67, 67-76.	0.7	12
93	Intrinsic superlinear dose dependence of thermoluminescence and optically stimulated luminescence at high excitation dose rates. Radiation Measurements, 2014, 71, 220-225.	0.7	4
94	Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects. Journal of Luminescence, 2014, 153, 118-124.	1.5	29
95	Mathematical characterization of continuous wave infrared stimulated luminescence signals (CW-IRSL) from feldspars. Journal of Luminescence, 2014, 154, 362-368.	1.5	5
96	On the shape of continuous wave infrared stimulated luminescence signals from feldspars: A case study. Journal of Luminescence, 2014, 153, 96-103.	1.5	25
97	On the expected order of kinetics in a series of thermoluminescence (TL) and thermally stimulated conductivity (TSC) peaks. Nuclear Instruments & Methods in Physics Research B, 2013, 312, 60-69.	0.6	22
98	Further investigations of tunneling recombination processes in random distributions of defects. Radiation Measurements, 2013, 58, 66-74.	0.7	29
99	Anomalous fading of OSL signals originating from very deep traps in Durango apatite. Radiation Measurements, 2013, 49, 73-81.	0.7	28
100	Modeling TL-like thermally assisted optically stimulated luminescence (TA-OSL). Radiation Measurements, 2013, 56, 6-12.	0.7	6
101	On the quasi-equilibrium assumptions in the theory of thermoluminescence (TL). Journal of Luminescence, 2013, 143, 734-740.	1.5	14
102	Thermal dependence of time-resolved blue light stimulated luminescence in α-Al2O3:C. Journal of Luminescence, 2013, 136, 270-277.	1.5	14
103	Analytical solutions for stimulated luminescence emission from tunneling recombination in random distributions of defects. Journal of Luminescence, 2013, 137, 109-115.	1.5	79
104	Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model. Radiation Measurements, 2013, 51-52, 40-47.	0.7	38
105	Two-stage thermal stimulation of thermoluminescence. Radiation Measurements, 2012, 47, 809-813.	0.7	46
106	Modeling of the shape of infrared stimulated luminescence signals in feldspars. Radiation Measurements, 2012, 47, 870-876.	0.7	17
107	Prevalence of firstâ€order kinetics in thermoluminescence materials: An explanation based on multiple competition processes. Physica Status Solidi (B): Basic Research, 2012, 249, 1590-1601.	0.7	55
108	Reconstruction of thermally quenched glow curves in quartz. Radiation Measurements, 2012, 47, 250-257.	0.7	20

#	Article	IF	CITATIONS
109	Superlinear dose response of thermoluminescence (TL) and optically stimulated luminescence (OSL) signals in luminescence materials: An analytical approach. Journal of Luminescence, 2012, 132, 1446-1455.	1.5	10
110	Time-resolved infrared stimulated luminescence signals in feldspars: Analysis based on exponential and stretched exponential functions. Journal of Luminescence, 2012, 132, 2330-2340.	1.5	18
111	On the intrinsic accuracy and precision of luminescence dating techniques for fired ceramics. Journal of Archaeological Science, 2011, 38, 1591-1602.	1.2	19
112	A model for explaining the concentration quenching of thermoluminescence. Radiation Measurements, 2011, 46, 1380-1384.	0.7	69
113	Preliminary results towards the equivalence of transformed continuous-wave Optically Stimulated Luminescence (CW-OSL) and linearly-modulated (LM-OSL) signals in quartz. Geochronometria, 2011, 38, 209-216.	0.2	11
114	Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry. Applied Radiation and Isotopes, 2011, 69, 1255-1262.	0.7	26
115	Precision and accuracy of two luminescence dating techniques for retrospective dosimetry: SAR-OSL and SAR-ITL. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 653-663.	0.6	6
116	Simulations of thermally transferred OSL signals in quartz: Accuracy and precision of the protocols for equivalent dose evaluation. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1431-1443.	0.6	12
117	Simulations of time-resolved photoluminescence experiments in α-Al2O3:C. Journal of Luminescence, 2011, 131, 1086-1094.	1.5	27
118	Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz. Journal of Luminescence, 2011, 131, 1827-1835.	1.5	17
119	Simulation of the Nonlinear Dose Dependence of Stabilized Point Defects. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012071.	0.3	0
120	Investigation of OSL signals from very deep traps in unfired and fired quartz samples. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 592-598.	0.6	18
121	Nonlinear dose dependence of TL and LM-OSL within the one trap-one center model. Radiation Measurements, 2010, 45, 277-280.	0.7	7
122	On the initial-occupancy dependence of some luminescence phenomena under the one-trap-one-recombination-center (OTOR) model. Radiation Measurements, 2010, 45, 147-150.	0.7	3
123	Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence. Journal of Luminescence, 2010, 130, 902-909.	1.5	69
124	Simulation of the influence of thermal quenching on thermoluminescence glowâ€peaks. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1216-1226.	0.8	33
125	Simulations of isothermal processes in the semilocalized transition (SLT) model of thermoluminescence (TL). Journal Physics D: Applied Physics, 2010, 43, 175403.	1.3	8
126	MIXED-ORDER KINETICS MODEL FOR OPTICALLY STIMULATED LUMINESCENCE. Modern Physics Letters B, 2009, 23, 3191-3207.	1.0	17

#	Article	IF	CITATIONS
127	Radioluminescence in Al ₂ O ₃ : C – analytical and numerical simulation results. Journal Physics D: Applied Physics, 2009, 42, 175107.	1.3	23
128	Experimental and modelling study of pulsed optically stimulated luminescence in quartz, marble and beta irradiated salt. Journal Physics D: Applied Physics, 2009, 42, 055407.	1.3	16
129	On the theoretical basis for the duplicitous thermoluminescence peak. Journal Physics D: Applied Physics, 2009, 42, 155409.	1.3	15
130	Simulations of thermally transferred OSL experiments and of the ReSAR dating protocol for quartz. Radiation Measurements, 2009, 44, 634-638.	0.7	13
131	A new look at the linear-modulated optically stimulated luminescence (LM-OSL) as a tool for dating and dosimetry. Radiation Measurements, 2009, 44, 344-350.	0.7	10
132	Thermoluminescence kinetic study of binary lead-silicate glasses. Journal of Luminescence, 2009, 129, 570-577.	1.5	20
133	Optically stimulated exoelectron emission processes in quartz: comparison of experiment and theory. Journal of Luminescence, 2009, 129, 1003-1009.	1.5	12
134	Sublinear dose dependence of thermoluminescence and optically stimulated luminescence prior to the approach to saturation level. Radiation Measurements, 2009, 44, 606-610.	0.7	31
135	Computerized curve deconvolution analysis for LM-OSL. Radiation Measurements, 2008, 43, 737-741.	0.7	78
136	Thermoluminescence glowâ€peak shape methods based on mixed order kinetics. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1181-1189.	0.8	51
137	Duplicitous thermoluminescence peak associated with a thermal release of electrons and holes from trapping states. Radiation Measurements, 2008, 43, 162-166.	0.7	9
138	A quantitative kinetic model for Al2O3:C: TL response to UV-illumination. Radiation Measurements, 2008, 43, 175-179.	0.7	12
139	A theoretical model for a new dating protocol for quartz based on thermally transferred OSL (TT-OSL). Radiation Measurements, 2008, 43, 704-708.	0.7	45
140	Simulations of the predose technique for retrospective dosimetry and authenticity testing. Radiation Measurements, 2008, 43, 1343-1353.	0.7	19
141	Simulation of OSL Pulse-Annealing at Different Heating Rates: Conclusions Concerning the Evaluated Trapping Parameters and Lifetimes. Geochronometria, 2008, 30, 1-7.	0.2	4
142	A unified presentation of thermoluminescence (TL), phosphorescence and linear-modulated optically stimulated luminescence (LM-OSL). Journal Physics D: Applied Physics, 2008, 41, 035102.	1.3	7
143	Modelling thermal transfer in optically stimulated luminescence of quartz. Journal Physics D: Applied Physics, 2007, 40, 998-1006.	1.3	24
144	Dependence of the anomalous fading of the TL and blue-OSL of fluorapatite on the occupancy of the tunnelling recombination sites. Journal of Luminescence, 2007, 126, 303-308.	1.5	16

#	Article	IF	CITATIONS
145	A quantitative kinetic model for Al2O3:C: TL response to ionizing radiation. Radiation Measurements, 2007, 42, 198-204.	0.7	32
146	Simulations of the effect of pulse annealing on optically-stimulated luminescence of quartz. Radiation Measurements, 2007, 42, 1587-1599.	0.7	15
147	Peak shape methods for general order thermoluminescence glow-peaks: A reappraisal. Nuclear Instruments & Methods in Physics Research B, 2007, 262, 313-322.	0.6	67
148	Thermoluminescence response and apparent anomalous fading factor of Durango fluorapatite as a function of the heating rate. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3816-3823.	0.8	33
149	The effects of annealing and irradiation on the sensitivity and superlinearity properties of the thermoluminescence peak of quartz. Radiation Measurements, 2006, 41, 554-564.	0.7	38
150	Comparison of experimental and modelled quartz thermal-activation curves obtained using multiple- and single-aliquot procedures. Radiation Measurements, 2006, 41, 910-916.	0.7	12
151	Nonmonotonic dose dependence of OSL intensity due to competition during irradiation and readout. Radiation Measurements, 2006, 41, 903-909.	0.7	25
152	Theoretical modelling of experimental diagnostic procedures employed during pre-dose dosimetry of quartz. Radiation Protection Dosimetry, 2006, 119, 111-114.	0.4	7
153	Absorbed dose measurements of a handheld 50 kVP X-ray source in water with thermoluminescence dosemeters. Radiation Protection Dosimetry, 2006, 120, 78-82.	0.4	10
154	A comprehensive comparative study of the predose effect for three quartz crystals of different origin. Radiation Protection Dosimetry, 2006, 119, 438-441.	0.4	17
155	The nonmonotonic dose dependence of optically stimulated luminescence in Al2O3:C: Analytical and numerical simulation results. Journal of Applied Physics, 2006, 99, 033511.	1.1	14
156	Thermoluminescence under an exponential heating function: II. Glow-curve deconvolution of experimental glow-curves. Journal Physics D: Applied Physics, 2006, 39, 1508-1514.	1.3	21
157	Thermoluminescence under an exponential heating function: I. Theory. Journal Physics D: Applied Physics, 2006, 39, 1500-1507.	1.3	25
158	Evaluation of activation energies in the semi-localized transition model of thermoluminescence. Journal Physics D: Applied Physics, 2005, 38, 2179-2186.	1.3	23
159	A model for non-monotonic dose dependence of thermoluminescence (TL). Journal of Physics Condensed Matter, 2005, 17, 737-753.	0.7	37
160	Attitudes of Undergraduate General Science Students Toward Learning Science and the Nature of Science. AIP Conference Proceedings, 2005, , .	0.3	2
161	Modelling thermal activation characteristics of the sensitization of thermoluminescence in quartz. Journal Physics D: Applied Physics, 2004, 37, 159-164.	1.3	32
162	Simulation of the experimental pre-dose technique for retrospective dosimetry in quartz. Radiation Protection Dosimetry, 2004, 109, 225-234.	0.4	9

#	Article	IF	CITATIONS
163	Applicability of the Zimmerman predose model in the thermoluminescence of predosed and annealed synthetic quartz samples. Radiation Measurements, 2003, 37, 267-274.	0.7	36
164	Cooling rate effects on the thermoluminescence glow curves of Arkansas quartz. Physica Status Solidi A, 2003, 198, 312-321.	1.7	26
165	On the Possibility of using Commercial Software Packages for Thermoluminescence Glow Curve Deconvolution Analysis. Radiation Protection Dosimetry, 2002, 101, 93-98.	0.4	16
166	Search for Common Characteristics in the Glow Curves of Quartz of Various Origins. Radiation Protection Dosimetry, 2002, 100, 373-376.	0.4	35
167	Detailed Kinetic Study of the Thermoluminescence Glow Curve of Synthetic Quartz. Radiation Protection Dosimetry, 2002, 100, 225-228.	0.4	32
168	Fit of Second Order Thermoluminescence Glow Peaks Using the Logistic Distribution Function. Radiation Protection Dosimetry, 2001, 95, 225-229.	0.4	12
169	Fit of First Order Thermoluminescence Glow Peaks using the Weibull Distribution Function. Radiation Protection Dosimetry, 2001, 93, 11-17.	0.4	27
170	An improved experimental procedure of separating a composite thermoluminescence glow curve into its components. Radiation Measurements, 2000, 32, 805-812.	0.7	19
171	Minimising the Spurious TL of Recently Fired Ceramics Using the Foil Technique. Radiation Protection Dosimetry, 1999, 84, 499-502.	0.4	4
172	Modeling forces on the human body. Physics Teacher, 1999, 37, 469-474.	0.2	1
173	The effect of annealing atmosphere on the thermoluminescence of synthetic calcite. Radiation Measurements, 1998, 29, 45-52.	0.7	1
174	Effects of air resistance. Physics Teacher, 1997, 35, 364-368.	0.2	17
175	Spurious and regenerated thermoluminescence in calcite powder samples. Radiation Measurements, 1997, 27, 37-42.	0.7	9
176	Thermoluminescence from a distribution of trapping levels in UV irradiated calcite. Radiation Measurements, 1996, 26, 265-280.	0.7	16
177	Annealing effects on the thermoluminescence of synthetic calcite powder. Radiation Measurements, 1994, 23, 131-142.	0.7	21
178	Thermoluminescence study of annealing a geological calcite. International Journal of Radiation Applications and Instrumentation Part D, Nuclear Tracks and Radiation Measurements, 1990, 17, 517-523.	0.6	17