Andrew D Engell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718713/publications.pdf Version: 2024-02-01

ANDREW D ENCELL

#	Article	IF	CITATIONS
1	The Neural Bases of Cognitive Conflict and Control in Moral Judgment. Neuron, 2004, 44, 389-400.	8.1	2,010
2	Understanding evaluation of faces on social dimensions. Trends in Cognitive Sciences, 2008, 12, 455-460.	7.8	525
3	Implicit Trustworthiness Decisions: Automatic Coding of Face Properties in the Human Amygdala. Journal of Cognitive Neuroscience, 2007, 19, 1508-1519.	2.3	429
4	Facial expression and gaze-direction in human superior temporal sulcus. Neuropsychologia, 2007, 45, 3234-3241.	1.6	227
5	The role of the amygdala in implicit evaluation of emotionally neutral faces. Social Cognitive and Affective Neuroscience, 2008, 3, 303-312.	3.0	152
6	Distributed representations of dynamic facial expressions in the superior temporal sulcus. Journal of Vision, 2010, 10, 11-11.	0.3	141
7	Implicit working memory. Consciousness and Cognition, 2009, 18, 665-678.	1.5	111
8	Autism Spectrum Traits in the Typical Population Predict Structure and Function in the Posterior Superior Temporal Sulcus. Cerebral Cortex, 2011, 21, 493-500.	2.9	99
9	The Relationship of Gamma Oscillations and Face-Specific ERPs Recorded Subdurally from Occipitotemporal Cortex. Cerebral Cortex, 2011, 21, 1213-1221.	2.9	80
10	Probabilistic atlases for face and biological motion perception: An analysis of their reliability and overlap. NeuroImage, 2013, 74, 140-151.	4.2	76
11	Connectivity Analysis Reveals a Cortical Network for Eye Gaze Perception. Cerebral Cortex, 2010, 20, 1780-1787.	2.9	71
12	Selective Attention Modulates Face-Specific Induced Gamma Oscillations Recorded from Ventral Occipitotemporal Cortex. Journal of Neuroscience, 2010, 30, 8780-8786.	3.6	71
13	The fMRI BOLD signal tracks electrophysiological spectral perturbations, not event-related potentials. NeuroImage, 2012, 59, 2600-2606.	4.2	63
14	Amygdala and dorsomedial prefrontal cortex responses to appearance-based and behavior-based person impressions. Social Cognitive and Affective Neuroscience, 2011, 6, 572-581.	3.0	59
15	Autism spectrum traits predict the neural response to eye gaze in typical individuals. NeuroImage, 2012, 59, 3356-3363.	4.2	59
16	Repetition suppression of faceâ€selective evoked and induced EEG recorded from human cortex. Human Brain Mapping, 2014, 35, 4155-4162.	3.6	57
17	Common Neural Mechanisms for the Evaluation of Facial Trustworthiness and Emotional Expressions as Revealed by Behavioral Adaptation. Perception, 2010, 39, 931-941.	1.2	55
18	Task-invariant Brain Responses to the Social Value of Faces. Journal of Cognitive Neuroscience, 2011, 23, 2766-2781.	2.3	53

ANDREW D ENGELL

#	Article	IF	CITATIONS
19	Differential activation of frontoparietal attention networks by social and symbolic spatial cues. Social Cognitive and Affective Neuroscience, 2010, 5, 432-440.	3.0	48
20	Face, eye, and body selective responses in fusiform gyrus and adjacent cortex: an intracranial EEG study. Frontiers in Human Neuroscience, 2014, 8, 642.	2.0	28
21	Stimulus-induced reversal of information flow through a cortical network for animacy perception. Social Cognitive and Affective Neuroscience, 2015, 10, 129-135.	3.0	12
22	Early identity recognition of familiar faces is not dependent on holistic processing. Social Cognitive and Affective Neuroscience, 2018, 13, 1019-1027.	3.0	6
23	Sensitivity to Faces with Typical and Atypical Part Configurations within Regions of the Face-processing Network: An fMRI Study. Journal of Cognitive Neuroscience, 2018, 30, 963-972.	2.3	4
24	Faces under continuous flash suppression capture attention faster than objects, but without a face-evoked steady-state visual potential: Is curvilinearity responsible for the behavioral effect?. Journal of Vision, 2020, 20, 14.	0.3	3