Christian May

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718525/publications.pdf

Version: 2024-02-01

687363 713466 1,805 29 13 21 citations h-index g-index papers 29 29 29 3387 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Roll-to-roll fabrication of highly transparent Ca:Ag top-electrode towards flexible large-area OLED lighting application. Flexible and Printed Electronics, 2021, 6, 035001.	2.7	16
2	Flexible OLED lighting and signage for automotive application. , 2021, , .		1
3	8â€3: Invited Paper: OLED Lighting Design and Rollâ€toâ€Roll Manufacturing. Digest of Technical Papers SID International Symposium, 2020, 51, 90-92.	0.3	1
4	OLED Manufacturing on Flexible Substrates Towards Roll-to-Roll. MRS Advances, 2019, 4, 1367-1375.	0.9	18
5	Fabrication technologies for flexible OLED lighting modules. , 2016, , .		1
6	Present Status of Roll-to-Roll OLED Fabrication and Encapsulation. Journal of the Japan Society of Colour Material, 2013, 86, 461-465.	0.1	5
7	Transparente leitfÃ ¤ ige Elektroden. Vakuum in Forschung Und Praxis, 2012, 24, 24-31.	0.1	1
8	Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Postâ€Treatment for ITOâ€Free Organic Solar Cells. Advanced Functional Materials, 2011, 21, 1076-1081.	14.9	1,218
9	Origin of damages in OLED from Al top electrode deposition by DC magnetron sputtering. Organic Electronics, 2010, 11, 322-331.	2.6	42
10	OLED manufacturing for large area lighting applications. Thin Solid Films, 2010, 518, 3042-3045.	1.8	97
11	Development of new transparent conductors and device applications utilizing a multidisciplinary approach. Thin Solid Films, 2010, 518, 3109-3114.	1.8	24
12	Power electronics in railway lighting systems. , 2010, , .		5
13	Al Top Cathode Deposition on OLED Using DC Magnetron Sputtering. Plasma Processes and Polymers, 2009, 6, S808.	3.0	10
14	In-line deposition of organic light-emitting devices for large area applications. Thin Solid Films, 2008, 516, 4609-4612.	1.8	18
15	High efficient pin orange organic light emitting diode fabrication with novel Al cathode using DC magnetron sputtering. Proceedings of SPIE, 2008, , .	0.8	2
16	Highly efficient p-i-n-type organic light emitting diodes on ZnO:Al substrates. Applied Physics Letters, 2007, 91, 063510.	3.3	23
17	19.4: Large Area pâ€iâ€n Type OLEDs for Lighting. Digest of Technical Papers SID International Symposium, 2007, 38, 1030-1033.	0.3	6
18	Integration of high-efficiency PIN organic light-emitting devices in lighting and optoelectronic applications. , 2007, , .		1

#	Article	IF	CITATIONS
19	Organic solar cells on indium tin oxide and aluminum doped zinc oxide anodes. Applied Physics Letters, 2007, 91, .	3.3	105
20	In-line deposition of high-efficiency p-i-n organic light-emitting devices. , 2006, , .		1
21	Second generation OLED devices and systems: inline evaporation, highly efficient OLED devices, and novel driver/controller ASICs., 2005, , .		5
22	Deposition of TCO films by reactive magnetron sputtering from metallic Zn:Al alloy targets. Surface and Coatings Technology, 2003, 169-170, 512-516.	4.8	27
23	Optical investigations in a PEM controlled reactive magnetron sputter process for aluminium doped zinc oxide layers using metallic alloy targets. Surface and Coatings Technology, 2003, 174-175, 222-228.	4.8	26
24	Low ohm large area ITO coating by reactive magnetron sputtering in DC and MF mode. Vacuum, 2000, 59, 500-505.	3.5	21
25	ITO coating by reactive magnetron sputtering–comparison of properties from DC and MF processing. Thin Solid Films, 1999, 351, 48-52.	1.8	121
26	Integrated X-ray substructure analysis of plastically deformed beryllium single crystals. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 591-598.	0.4	2
27	Plastically deformed beryllium blades for neutron monochromator construction. Physica B: Condensed Matter, 1997, 234-236, 1055-1057.	2.7	0
28	Plastic bending of thin beryllium blades for neutron monochromators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 357, 511-518.	1.6	8
29	Computer-aided analysis of grain growth in metals. European Physical Journal Special Topics, 1993, 03, C7-1241-C7-1244.	0.2	O