Sophie Gryseels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718447/publications.pdf

Version: 2024-02-01

516561 454834 1,027 32 16 30 citations g-index h-index papers 43 43 43 1973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	13.7	272
2	Risk of humanâ€ŧoâ€wildlife transmission of SARSâ€CoVâ€2. Mammal Review, 2021, 51, 272-292.	2.2	69
3	When Viruses Don't Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathogens, 2017, 13, e1006073.	2.1	52
4	Application of real-time PCR in Ghana, a Buruli ulcer-endemic country, confirms the presence of <i>Mycobacterium ulcerans </i> in the environment. FEMS Microbiology Letters, 2010, 304, 191-194.	0.7	51
5	Presence of Mopeia Virus, an African Arenavirus, Related to Biotope and Individual Rodent Host Characteristics: Implications for Virus Transmission. Vector-Borne and Zoonotic Diseases, 2011, 11, 1125-1131.	0.6	44
6	Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Scientific Reports, 2015, 5, 10445.	1.6	37
7	Amoebae as Potential Environmental Hosts for Mycobacterium ulcerans and Other Mycobacteria, but Doubtful Actors in Buruli Ulcer Epidemiology. PLoS Neglected Tropical Diseases, 2012, 6, e1764.	1.3	35
8	Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genomics, 2018, 19, 617.	1.2	35
9	Lactating mothers infected with Ebola virus: EBOV RT-PCR of blood only may be insufficient. Eurosurveillance, 2015, 20, .	3.9	35
10	Gairo virus, a novel arenavirus of the widespread Mastomys natalensis: Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology, 2015, 476, 249-256.	1.1	34
11	Analysis of Diagnostic Findings From the European Mobile Laboratory in Guéckédou, Guinea, March 2014 Through March 2015. Journal of Infectious Diseases, 2016, 214, S250-S257.	1.9	32
12	A near full-length HIV-1 genome from 1966 recovered from formalin-fixed paraffin-embedded tissue. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12222-12229.	3.3	31
13	Nonlinear scaling of foraging contacts with rodent population density. Oikos, 2017, 126, 792-800.	1.2	28
14	Investigating the Role of Free-living Amoebae as a Reservoir for Mycobacterium ulcerans. PLoS Neglected Tropical Diseases, 2014, 8, e3148.	1.3	27
15	Divergence dating using mixed effects clock modelling: An application to HIV-1. Virus Evolution, 2019, 5, vez036.	2.2	24
16	No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites and Vectors, 2017, 10, 210.	1.0	20
17	Role of Wildlife in Emergence of Ebola Virus in Kaigbono (Likati), Democratic Republic of the Congo, 2017. Emerging Infectious Diseases, 2020, 26, 2205-2209.	2.0	19
18	Arenavirus Dynamics in Experimentally and Naturally Infected Rodents. EcoHealth, 2017, 14, 463-473.	0.9	18

#	Article	IF	Citations
19	SARSâ€CoVâ€⊋ surveillance in Norway rats (<i>Rattus norvegicus</i>) from Antwerp sewer system, Belgium. Transboundary and Emerging Diseases, 2022, 69, 3016-3021.	1.3	18
20	Three arenaviruses in three subspecific natal multimammate mouse taxa in Tanzania: same host specificity, but different spatial genetic structure?. Virus Evolution, 2020, 6, veaa039.	2.2	18
21	Knowledge of morphology is still required when identifying new amoeba isolates by molecular techniques. European Journal of Protistology, 2012, 48, 178-184.	0.5	15
22	Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasites and Vectors, 2018, 11, 90.	1.0	15
23	Evolution and Diversity of Bat and Rodent Paramyxoviruses from North America. Journal of Virology, 2022, 96, JVI0109821.	1.5	15
24	Genetic distinction between contiguous urban and rural multimammate mice in Tanzania despite gene flow. Journal of Evolutionary Biology, 2016, 29, 1952-1967.	0.8	14
25	Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host. Journal of Animal Ecology, 2020, 89, 506-518.	1.3	13
26	Molecular detection and genomic characterization of diverse hepaciviruses in African rodents. Virus Evolution, 2021, 7, veab036.	2.2	11
27	A new cytotype of the African pygmy mouse Mus minutoides in Eastern Africa. Implications for the evolution of sex-autosome translocations. Chromosome Research, 2014, 22, 533-543.	1.0	9
28	Polymorphism in <i>vkorc1</i> Gene of Natal Multimammate Mice, <i>Mastomys natalensis</i> , in Tanzania. Journal of Heredity, 2015, 106, 637-643.	1.0	6
29	Coevolutionary Analysis Implicates Toll-Like Receptor 9 in Papillomavirus Restriction. MBio, 2022, 13, e0005422.	1.8	5
30	Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses. Viruses, 2021, 13, 1842.	1.5	4
31	Genetic structure and diversity of the black and rufous sengi in Tanzanian coastal forests. Journal of Zoology, 2016, 300, 305-313.	0.8	2
32	No evidence for avoidance of black rat scent by the presumably less competitive Natal multimammate mouse in a choice experiment. African Zoology, 2017, 52, 119-123.	0.2	1