
Alexey M Glushenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. Journal of Materials Chemistry, 2011, 21, 11862.	6.7	373
2	Tin-based composite anodes for potassium-ion batteries. Chemical Communications, 2016, 52, 9279-9282.	2.2	356
3	Potassiumâ€lon Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism. Advanced Functional Materials, 2018, 28, 1703857.	7.8	305
4	Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5572-5584.	5.2	241
5	High capacity potassium-ion battery anodes based on black phosphorus. Journal of Materials Chemistry A, 2017, 5, 23506-23512.	5.2	232
6	Nanocrystalline SnS ₂ coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chemical Communications, 2017, 53, 8272-8275.	2.2	197
7	New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy and Environmental Science, 2019, 12, 1143-1176.	15.6	187
8	K-ion and Na-ion storage performances of Co ₃ O ₄ –Fe ₂ O ₃ nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale, 2017, 9, 3646-3654.	2.8	176
9	Lithium-ion capacitors with 2D Nb2CTx (MXene) – carbon nanotube electrodes. Journal of Power Sources, 2016, 326, 686-694.	4.0	175
10	Nanopatterning and Electrical Tuning of MoS ₂ Layers with a Subnanometer Helium Ion Beam. Nano Letters, 2015, 15, 5307-5313.	4.5	171
11	Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V ₂ O ₅ . Chemistry of Materials, 2010, 22, 914-921.	3.2	161
12	Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale, 2013, 5, 7970.	2.8	149
13	Electrochemical investigation of sodium reactivity with nanostructured Co ₃ O ₄ for sodium-ion batteries. Chemical Communications, 2014, 50, 5057-5060.	2.2	145
14	High-Efficient Production of Boron Nitride Nanosheets via an Optimized Ball Milling Process for Lubrication in Oil. Scientific Reports, 2014, 4, 7288.	1.6	132
15	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9350.	6.7	127
16	Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. Chemical Communications, 2021, 57, 1080-1092.	2.2	112
17	Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. Journal of Materials Chemistry A, 2014, 2, 4282.	5.2	92
18	Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica Chimica Acta. 2013. 803. 128-134.	2.6	80

ALEXEY M GLUSHENKOV

#	Article	IF	CITATIONS
19	Plasmonic substrates for surface enhanced Raman scattering. Analytica Chimica Acta, 2017, 984, 19-41.	2.6	79
20	Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling. Journal of Power Sources, 2015, 282, 462-470.	4.0	67
21	Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30152-30164.	4.0	63
22	Boron nitride nanotube films grown from boron ink painting. Journal of Materials Chemistry, 2010, 20, 9679.	6.7	61
23	Reversible Three-Electron Redox Reaction of Mo ³⁺ /Mo ⁶⁺ for Rechargeable Lithium Batteries. ACS Energy Letters, 2017, 2, 733-738.	8.8	61
24	Synthesis of boron nitride nanotubes by boron ink annealing. Nanotechnology, 2010, 21, 105601.	1.3	59
25	Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Global Challenges, 2019, 3, 1900037.	1.8	59
26	Enhanced lithium storage in Fe2O3–SnO2–C nanocomposite anode with a breathable structure. Nanoscale, 2013, 5, 4910.	2.8	54
27	A Novel Approach for Real Mass Transformation from V ₂ O ₅ Particles to Nanorods. Crystal Growth and Design, 2008, 8, 3661-3665.	1.4	52
28	Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy and Environmental Science, 2021, 14, 1380-1401.	15.6	51
29	llmenite FeTiO ₃ Nanoflowers and Their Pseudocapacitance. Journal of Physical Chemistry C, 2011, 115, 17297-17302.	1.5	50
30	Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. Journal of Power Sources, 2019, 413, 476-484.	4.0	49
31	Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes. Journal of Power Sources, 2012, 220, 298-305.	4.0	48
32	Reactive ball milling to produce nanocrystalline ZnO. Materials Letters, 2008, 62, 4047-4049.	1.3	46
33	Single deep ultraviolet light emission from boron nitride nanotube film. Applied Physics Letters, 2010, 97, .	1.5	44
34	Nanofibrous carbon with herringbone structure as an effective catalyst of the H2S selective oxidation. Carbon, 2010, 48, 2004-2012.	5.4	40
35	Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846.	1.2	39
36	Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology, 2007, 18, 175604.	1.3	38

Alexey M Glushenkov

#	Article	IF	CITATIONS
37	Na-Excess Cation-Disordered Rocksalt Oxide: Na _{1.3} Nb _{0.3} Mn _{0.4} O ₂ . Chemistry of Materials, 2017, 29, 5043-5047.	3.2	38
38	Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. Journal of the Electrochemical Society, 2015, 162, A5065-A5069.	1.3	37
39	Understanding Structure–Function Relationship in Hybrid Co ₃ O ₄ –Fe ₂ O ₃ /C Lithium-Ion Battery Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 20736-20744.	4.0	37
40	Bimetallic molybdenum tungsten oxynitride: structure and electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 7889.	5.2	36
41	Synthesis of Composite Nanosheets of Graphene and Boron Nitride and Their Lubrication Application in Oil. Advanced Engineering Materials, 2018, 20, 1700488.	1.6	35
42	New effective catalysts based on mesoporous nanofibrous carbon for selective oxidation of hydrogen sulfide. Applied Catalysis B: Environmental, 2009, 85, 180-191.	10.8	33
43	Lithium Germanate (Li ₂ GeO ₃): A Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 16059-16063.	7.2	32
44	Effect of Nanosizing on Reversible Sodium Storage in a NaCrO ₂ Electrode. ACS Applied Nano Materials, 2018, 1, 364-370.	2.4	32
45	Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochimica Acta, 2013, 108, 127-134.	2.6	30
46	3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators. MRS Communications, 2019, 9, 159-164.	0.8	30
47	Probing electrochemical reactivity in an Sb ₂ S ₃ -containing potassium-ion battery anode: observation of an increased capacity. Journal of Materials Chemistry A, 2020, 8, 11424-11434.	5.2	30
48	Highly dispersed and disordered nickel–iron layered hydroxides and sulphides: robust and high-activity water oxidation catalysts. Sustainable Energy and Fuels, 2018, 2, 1561-1573.	2.5	29
49	Expanding the Applications of the Ilmenite Mineral to the Preparation of Nanostructures: TiO ₂ Nanorods and their Photocatalytic Properties in the Degradation of Oxalic Acid. Chemistry - A European Journal, 2013, 19, 1091-1096.	1.7	25
50	Cell Configurations and Electrode Materials for Nonaqueous Sodiumâ€ion Capacitors: The Current State of the Field. Advanced Sustainable Systems, 2018, 2, 1800006.	2.7	25
51	Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling. Journal of Power Sources, 2020, 476, 228733.	4.0	25
52	Porous TiO2with a controllable bimodal pore size distribution from natural ilmenite. CrystEngComm, 2011, 13, 1322-1327.	1.3	23
53	Nanoporous transition metal oxynitrides as catalysts for the oxygen reduction reaction. Electrochimica Acta, 2013, 103, 151-160.	2.6	22
54	Titanium Oxide Nanorods Extracted From Ilmenite Sands. Crystal Growth and Design, 2009, 9, 1240-1244.	1.4	21

ALEXEY M GLUSHENKOV

#	Article	IF	CITATIONS
55	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	1.3	19
56	Clusters of α-LiFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2013, 15, 20371.	1.3	18
57	Evolution of the electrochemical capacitance of transition metal oxynitrides with time: the effect of ageing and passivation. Journal of Materials Chemistry A, 2014, 2, 12940-12951.	5.2	18
58	Carbon coated Na7Fe7(PO4)6F3: A novel intercalation cathode for sodium-ion batteries. Journal of Power Sources, 2014, 271, 497-503.	4.0	17
59	Crystal phase engineered quantum wells in ZnO nanowires. Nanotechnology, 2013, 24, 215202.	1.3	16
60	Unusual corrugated nanowires of zinc oxide. Journal of Crystal Growth, 2008, 310, 3139-3143.	0.7	15
61	Investigation of K modified P2 Na _{0.7} Mn _{0.8} Mg _{0.2} O ₂ as a cathode material for sodium-ion batteries. CrystEngComm, 2019, 21, 172-181.	1.3	12
62	Anomalous evaporation behavior of ZnO powder milled mechanically under high-energy conditions. Materials Letters, 2008, 62, 715-718.	1.3	11
63	Preparation of composite electrodes with carbon nanotubes for lithium-ion batteries by low-energy ball milling. RSC Advances, 2014, 4, 36649-36655.	1.7	11
64	Lithium Germanate (Li ₂ GeO ₃): A Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 16293-16297.	1.6	11
65	Advanced Dualâ€lon Batteries with Highâ€Capacity Negative Electrodes Incorporating Black Phosphorus. Advanced Science, 2022, , 2201116.	5.6	11
66	Ball milled SnO2: a modified vapor source for growing nanostructures. Journal of Alloys and Compounds, 2010, 504, S315-S318.	2.8	10
67	<i>In situ</i> doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. Nanoscale Horizons, 2019, 4, 642-646.	4.1	10
68	Catalytic properties of nanofibrous carbon in selective oxidation of hydrogen sulphide. Particuology: Science and Technology of Particles, 2006, 4, 70-72.	0.4	9
69	Endâ€ofâ€Life Photovoltaic Recycled Silicon: A Sustainable Circular Materials Source for Electronic Industries. Advanced Energy and Sustainability Research, 2021, 2, 2100081.	2.8	9
70	Nano germanium incorporated thin graphite nanoplatelets: A novel germanium based lithium-ion battery anode with enhanced electrochemical performance. Electrochimica Acta, 2021, 391, 139001.	2.6	9
71	Twoâ€Dimensional Metal Oxide Nanoflower‣ike Architectures: A General Growth Method and Their Applications in Energy Storage and as Model Materials for Nanofabrication. ChemPlusChem, 2017, 82, 295-302.	1.3	6
72	Air-Assisted Growth of Tin Dioxide Nanoribbons. Journal of Nanoscience and Nanotechnology, 2010, 10, 5015-5019.	0.9	4

#	Article	IF	CITATIONS
73	N-doped carbon nanofibers from pyrolysis of free-base phthalocyanine. Diamond and Related Materials, 2020, 105, 107812.	1.8	2
74	V2O5 Nanorods with Improved Cycling Stability for Li Intercalation. Materials Research Society Symposia Proceedings, 2009, 1170, 76.	0.1	0