Hari Ram Upadhayay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diffuse water pollution during recent extreme wet-weather in the UK: Environmental damage costs and insight into the future?. Journal of Cleaner Production, 2022, 338, 130633.	4.6	8
2	Prolonged heavy rainfall and land use drive catchment sediment source dynamics: Appraisal using multiple biotracers. Water Research, 2022, 216, 118348.	5.3	13
3	Riparian buffer strips influence nitrogen losses as nitrous oxide and leached N from upslope permanent pasture. Agriculture, Ecosystems and Environment, 2022, 336, 108031.	2.5	3
4	Current advisory interventions for grazing ruminant farming cannot close exceedance of modern background sediment loss – Assessment using an instrumented farm platform and modelled scaling out. Environmental Science and Policy, 2021, 116, 114-127.	2.4	15
5	Dynamics of fluvial hydro-sedimentological, nutrient, particulate organic matter and effective particle size responses during the U.K. extreme wet winter of 2019–2020. Science of the Total Environment, 2021, 774, 145722.	3.9	5
6	Sediment source apportionment using optical property composite signatures in a rural catchment, Brazil. Catena, 2021, 202, 105208.	2.2	11
7	Insights into bulk stable isotope alteration during sediment redistribution to edge-of-field: impact on sediment source apportionment. Biogeochemistry, 2021, 155, 263-281.	1.7	2
8	Deposition and erosion behaviour of cohesive sediments in the upper River Taw observatory, southwest UK: Implications for management and modelling. Journal of Hydrology, 2021, 598, 126145.	2.3	3
9	Novel approaches to investigating spatial variability in channel bank total phosphorus at the catchment scale. Catena, 2021, 202, 105223.	2.2	10
10	Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. Journal of Soils and Sediments, 2020, 20, 4160-4193.	1.5	124
11	Experimental Investigation of Erosion Characteristics of Fine-Grained Cohesive Sediments. Water (Switzerland), 2020, 12, 1511.	1.2	7
12	Sensitivity of source apportionment predicted by a Bayesian tracer mixing model to the inclusion of a sediment connectivity index as an informative prior: Illustration using the Kharka catchment (Nepal). Science of the Total Environment, 2020, 713, 136703.	3.9	20
13	Catchment-wide variations and biogeochemical time lags in soil fatty acid carbon isotope composition for different land uses: Implications for sediment source classification. Organic Geochemistry, 2020, 146, 104048.	0.9	11
14	Differentiating the geographical origin of Ethiopian coffee using XRF- and ICP-based multi-element and stable isotope profiling. Food Chemistry, 2019, 290, 295-307.	4.2	36
15	lsotope mixing models require individual isotopic tracer content for correct quantification of sediment source contributions. Hydrological Processes, 2018, 32, 981-989.	1.1	21
16	A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment. Scientific Reports, 2018, 8, 13073.	1.6	57
17	Community managed forests dominate the catchment sediment cascade in the mid-hills of Nepal: A compound-specific stable isotope analysis. Science of the Total Environment, 2018, 637-638, 306-317.	3.9	30
18	Methodological perspectives on the application of compound-specific stable isotope fingerprinting for sediment source apportionment. Journal of Soils and Sediments, 2017, 17, 1537-1553.	1.5	46

#	Article	IF	CITATIONS
19	Importance of correct B value determination to quantify biological N2 fixation and N balances of faba beans (Vicia faba L.) via 15N natural abundance. Biology and Fertility of Soils, 2014, 50, 517-525.	2.3	37