Patrick Freund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4718107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine Journal, 2022, 12, 130S-146S.	2.3	34
2	Extent of Cord Pathology in the Lumbosacral Enlargement in Non-Traumatic versus Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2022, 39, 639-650.	3.4	12
3	Advanced imaging for spinal cord injury. , 2022, , 105-124.		0
4	Simultaneous assessment of regional distributions of atrophy across the neuraxis in MS patients. NeuroImage: Clinical, 2022, 34, 102985.	2.7	5
5	A New Framework for Investigating the Biological Basis of Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 5]: Mechanical Stress, Vulnerability and Time. Global Spine Journal, 2022, 12, 78S-96S.	2.3	36
6	Structural MRI Reveals Cervical Spinal Cord Atrophy in the P301L Mouse Model of Tauopathy: Gender and Transgene-Dosing Effects. Frontiers in Aging Neuroscience, 2022, 14, 825996.	3.4	1
7	Simultaneous voxelâ€wise analysis of brain and spinal cord morphometry and microstructure within the <scp>SPM</scp> framework. Human Brain Mapping, 2021, 42, 220-232.	3.6	10
8	Predictive Value of Midsagittal Tissue Bridges on Functional Recovery After Spinal Cord Injury. Neurorehabilitation and Neural Repair, 2021, 35, 33-43.	2.9	20
9	Wallerian degeneration in cervical spinal cord tracts is commonly seen in routine T2-weighted MRI after traumatic spinal cord injury and is associated with impairment in a retrospective study. European Radiology, 2021, 31, 2923-2932.	4.5	12
10	The Restless Spinal Cord in Degenerative Cervical Myelopathy. American Journal of Neuroradiology, 2021, 42, 597-609.	2.4	19
11	Considering nonâ€bladder aetiologies of overactive bladder: a functional neuroimaging study. BJU International, 2021, 128, 586-597.	2.5	10
12	Microstructural plasticity in nociceptive pathways after spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 863-871.	1.9	10
13	The Influence of Radio-Frequency Transmit Field Inhomogeneities on the Accuracy of G-ratio Weighted Imaging. Frontiers in Neuroscience, 2021, 15, 674719.	2.8	5
14	Improving Diagnostic Workup Following Traumatic Spinal Cord Injury: Advances in Biomarkers. Current Neurology and Neuroscience Reports, 2021, 21, 49.	4.2	9
15	Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology, 2021, 97, e1512-e1522.	1.1	11
16	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.	5.3	27
17	Tracking White and Gray Matter Degeneration along the Spinal Cord Axis in Degenerative Cervical Myelopathy. Journal of Neurotrauma, 2021, 38, 2978-2987.	3.4	19
18	Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.	12.0	65

#	Article	IF	CITATIONS
19	Longitudinal changes of spinal cord grey and white matter following spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1222-1230.	1.9	20
20	Spinal cord pathology revealed by MRI in traumatic spinal cord injury. Current Opinion in Neurology, 2021, 34, 789-795.	3.6	3
21	Finger somatotopy is preserved after tetraplegia but deteriorates over time. ELife, 2021, 10, .	6.0	14
22	Tracking tDCS induced grey matter changes in episodic migraine: a randomized controlled trial. Journal of Headache and Pain, 2021, 22, 139.	6.0	6
23	Cervical Cord Neurodegeneration in Traumatic and Non-Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 860-867.	3.4	38
24	The Damaged Spinal Cord Is a Suitable Target for Stem Cell Transplantation. Neurorehabilitation and Neural Repair, 2020, 34, 758-768.	2.9	23
25	Multiparameter mapping of relaxation (<scp>R1</scp> , <scp>R2</scp> *), proton density and magnetization transfer saturation at <scp>3 T</scp> : A multicenter dualâ€vendor reproducibility and repeatability study. Human Brain Mapping, 2020, 41, 4232-4247.	3.6	59
26	Tissue bridges predict neuropathic pain emergence after spinal cord injury. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1111-1117.	1.9	17
27	Extrapyramidal plasticity predicts recovery after spinal cord injury. Scientific Reports, 2020, 10, 14102.	3.3	7
28	TASCl—transcutaneous tibial nerve stimulation in patients with acute spinal cord injury to prevent neurogenic detrusor overactivity: protocol for a nationwide, randomised, sham-controlled, double-blind clinical trial. BMJ Open, 2020, 10, e039164.	1.9	18
29	Abnormal Connectivity and Brain Structure in Patients With Visual Snow. Frontiers in Human Neuroscience, 2020, 14, 582031.	2.0	33
30	Tracking the neurodegenerative gradient after spinal cord injury. NeuroImage: Clinical, 2020, 26, 102221.	2.7	18
31	Metabolites of neuroinflammation relate to neuropathic pain after spinal cord injury. Neurology, 2020, 95, e805-e814.	1.1	25
32	MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurology, The, 2019, 18, 1123-1135.	10.2	125
33	Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord, 2019, 57, 717-728.	1.9	40
34	Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature Reviews Neurology, 2019, 15, 718-731.	10.1	125
35	MR Spectroscopy of the Cervical Spinal Cord in Chronic Spinal Cord Injury. Radiology, 2019, 291, 131-138.	7.3	13
36	Segmental differences of cervical spinal cord motion: advancing from confounders to a diagnostic tool. Scientific Reports, 2019, 9, 7415.	3.3	11

#	Article	lF	CITATIONS
37	Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury. Neurology, 2019, 92, e2793-e2802.	1.1	34
38	In vivo evidence of remote neural degeneration in the lumbar enlargement after cervical injury. Neurology, 2019, 92, e1367-e1377.	1.1	29
39	Reliability of supraspinal correlates to lower urinary tract stimulation in healthy participants – A fMRI study. NeuroImage, 2019, 191, 481-492.	4.2	13
40	Tissue bridges predict recovery after traumatic and ischemic thoracic spinal cord injury. Neurology, 2019, 93, e1550-e1560.	1.1	23
41	Progressive neurodegeneration following spinal cord injury. Neurology, 2018, 90, e1257-e1266.	1.1	97
42	In cervical spondylotic myelopathy spinal cord motion is focally increased at the level of stenosis: a controlled cross-sectional study. Spinal Cord, 2018, 56, 769-776.	1.9	22
43	Dorsal and ventral horn atrophy is associated with clinical outcome after spinal cord injury. Neurology, 2018, 90, e1510-e1522.	1.1	44
44	Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction. NeuroImage, 2018, 166, 117-134.	4.2	29
45	Author response: Progressive neurodegeneration following spinal cord injury: Implications for clinical trials. Neurology, 2018, 91, 985-985.	1.1	7
46	Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical, 2018, 20, 556-563.	2.7	46
47	Progressive Ventricles Enlargement and Cerebrospinal Fluid Volume Increases as a Marker of Neurodegeneration in Patients with Spinal Cord Injury: A Longitudinal Magnetic Resonance Imaging Study. Journal of Neurotrauma, 2018, 35, 2941-2946.	3.4	22
48	Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury?. Annals of Neurology, 2017, 81, 740-748.	5.3	50
49	Neurodegeneration in the Spinal Ventral Horn Prior to Motor Impairment in Cervical Spondylotic Myelopathy. Journal of Neurotrauma, 2017, 34, 2329-2334.	3.4	30
50	Spinal cord grey matter segmentation challenge. NeuroImage, 2017, 152, 312-329.	4.2	97
51	The efficiency of retrospective artifact correction methods in improving the statistical power of between-group differences in spinal cord DTI. NeuroImage, 2017, 158, 296-307.	4.2	25
52	Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury. NeuroImage: Clinical, 2017, 15, 494-501.	2.7	15
53	MP77-01 DIFFERENT SUPRASPINAL RESPONSES TO AUTOMATED, REPETITIVE BLADDER FILLING IN OAB PATIENTS COMPARED TO HEALTHY SUBJECTS - AN FMRI STUDY. Journal of Urology, 2016, 195, .	0.4	0
54	PD06-11 REPRODUCIBILITY OF SUPRASPINAL RESPONSES TO AUTOMATED, REPETITIVE BLADDER FILLING - AN FMRI STUDY. Journal of Urology, 2016, 195, .	0.4	0

#	Article	IF	CITATIONS
55	Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Scientific Reports, 2016, 6, 24636.	3.3	52
56	Spinal cord injury affects the interplay between visual and sensorimotor representations of the body. Scientific Reports, 2016, 6, 20144.	3.3	42
57	Association of pain and CNS structural changes after spinal cord injury. Scientific Reports, 2016, 6, 18534.	3.3	84
58	MP60-15 SUPRASPINAL LOWER URINARY TRACT CONTROL IN SPINAL CORD INJURY PATIENTS: A STRUCTURAL AND FUNCTIONAL MRI STUDY. Journal of Urology, 2016, 195, .	0.4	1
59	Embodied neurology: an integrative framework for neurological disorders. Brain, 2016, 139, 1855-1861.	7.6	39
60	Discrepancy between perceived pain and cortical processing: A voxel-based morphometry and contact heat evoked potential study. Clinical Neurophysiology, 2016, 127, 762-768.	1.5	17
61	PD1-10 SUPRASPINAL CONTROL OF LOWER URINARY TRACT FUNCTION IN PATIENTS WITH SPINAL CORD INJURY: AN FMRI STUDY. Journal of Urology, 2015, 193, .	0.4	0
62	Tracking sensory system atrophy and outcome prediction in spinal cord injury. Annals of Neurology, 2015, 78, 751-761.	5.3	77
63	Volumetric and Shape Analysis of the Thalamus and Striatum in Amnestic Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2015, 49, 237-249.	2.6	17
64	Tracking trauma-induced structural and functional changes above the level of spinal cord injury. Current Opinion in Neurology, 2015, 28, 365-372.	3.6	16
65	Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study. Frontiers in Human Neuroscience, 2015, 9, 254.	2.0	59
66	Neuropathic Pain and Functional Reorganization in the Primary Sensorimotor Cortex After Spinal Cord Injury. Journal of Pain, 2015, 16, 1256-1267.	1.4	48
67	Traumatic Spinal Cord Injury. , 2014, , 49-55.		1
68	Differences in cortical coding of heat evoked pain beyond the perceived intensity: An fMRI and EEG study. Human Brain Mapping, 2014, 35, 1379-1389.	3.6	11
69	Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 2014, 35, 1862-1872.	3.1	248
70	Protocol for a prospective magnetic resonance imaging study on supraspinal lower urinary tract control in healthy subjects and spinal cord injury patients undergoing intradetrusor onabotulinumtoxinA injections for treating neurogenic detrusor overactivity. BMC Urology, 2014, 14, 68.	1.4	11
71	MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurology, The, 2013, 12, 873-881.	10.2	239
72	The impact of post-processing on spinal cord diffusion tensor imaging. Neurolmage, 2013, 70, 377-385.	4.2	59

#	Article	IF	CITATIONS
73	Tracking Changes following Spinal Cord Injury. Neuroscientist, 2013, 19, 116-128.	3.5	76
74	Axonal integrity predicts cortical reorganisation following cervical injury. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 629-637.	1.9	65
75	Degeneration of the Injured Cervical Cord Is Associated with Remote Changes in Corticospinal Tract Integrity and Upper Limb Impairment. PLoS ONE, 2012, 7, e51729.	2.5	62
76	Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. European Journal of Neuroscience, 2011, 34, 1839-1846.	2.6	72
77	Disability, atrophy and cortical reorganization following spinal cord injury. Brain, 2011, 134, 1610-1622.	7.6	238
78	Method for simultaneous voxelâ€based morphometry of the brain and cervical spinal cord area measurements using 3Dâ€MDEFT. Journal of Magnetic Resonance Imaging, 2010, 32, 1242-1247.	3.4	33
79	Recovery after spinal cord relapse in multiple sclerosis is predicted by radial diffusivity. Multiple Sclerosis Journal, 2010, 16, 1193-1202.	3.0	63
80	A case of polymicrogyria in macaque monkey: impact on anatomy and function of the motor system. BMC Neuroscience, 2009, 10, 155.	1.9	5
81	Antiâ€Nogoâ€A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates – reâ€examination and extension of behavioral data. European Journal of Neuroscience, 2009, 29, 983-996.	2.6	114
82	Anti-Nogo-A antibody treatment does not prevent cell body shrinkage in the motor cortex in adult monkeys subjected to unilateral cervical cord lesion. BMC Neuroscience, 2008, 9, 5.	1.9	48
83	Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: Effects of an antibody treatment neutralizing Nogo-A. Brain Research, 2008, 1217, 96-109.	2.2	18
84	Static mechanical allodynia (SMA) is a paradoxical painful hypo-aesthesia: Observations derived from neuropathic pain patients treated with somatosensory rehabilitation. Somatosensory & Motor Research, 2008, 25, 77-92.	0.9	28
85	Anti-Nogo-A antibody treatment enhances sprouting of corticospinal axons rostral to a unilateral cervical spinal cord lesion in adult macaque monkey. Journal of Comparative Neurology, 2007, 502, 644-659.	1.6	132
86	Reply to Challenges to the report of Nogo antibody effects in primates. Nature Medicine, 2006, 12, 1232-1233.	30.7	4
87	Nogo-A–specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nature Medicine, 2006, 12, 790-792.	30.7	298
88	The Human Spinal Cord is a Promising Target for Allogeneic Neural Stem Cell Transplantation. SSRN Electronic Journal, 0, , .	0.4	1