James Jeong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4717894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in Medicine and Biology, 2007, 33, 95-104.	0.7	331
2	Microbubble-Size Dependence of Focused Ultrasound-Induced Blood–Brain Barrier Opening in Mice <i>In Vivo</i> . IEEE Transactions on Biomedical Engineering, 2010, 57, 145-154.	2.5	217
3	<i>In vivo</i> transcranial cavitation threshold detection during ultrasound-induced blood–brain barrier opening in mice. Physics in Medicine and Biology, 2010, 55, 6141-6155.	1.6	210
4	Molecules of Various Pharmacologically-Relevant Sizes Can Cross the Ultrasound-Induced Blood-Brain Barrier Opening in vivo. Ultrasound in Medicine and Biology, 2010, 36, 58-67.	0.7	170
5	Ultrasound-Induced Blood-Brain Barrier Opening. Current Pharmaceutical Biotechnology, 2012, 13, 1332-1345.	0.9	142
6	Multi-Modality Safety Assessment of Blood-Brain Barrier Opening Using Focused Ultrasound and Definity Microbubbles: A Short-Term Study. Ultrasound in Medicine and Biology, 2010, 36, 1445-1459.	0.7	137
7	Noninvasive and localized neuronal delivery using short ultrasonic pulses and microbubbles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16539-16544.	3.3	130
8	Noninvasive and Localized Blood—Brain Barrier Disruption using Focused Ultrasound can be Achieved at Short Pulse Lengths and Low Pulse Repetition Frequencies. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 725-737.	2.4	122
9	Passive acoustic mapping utilizing optimal beamforming in ultrasound therapy monitoring. Journal of the Acoustical Society of America, 2015, 137, 2573-2585.	0.5	111
10	Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 2012, 57, N65-N81.	1.6	102
11	Enhanced Tumor Uptake and Penetration of Virotherapy Using Polymer Stealthing and Focused Ultrasound. Journal of the National Cancer Institute, 2013, 105, 1701-1710.	3.0	98
12	Noninvasive and Transient Blood-Brain Barrier Opening in the Hippocampus of Alzheimer's Double Transgenic Mice Using Focused Ultrasound. Ultrasonic Imaging, 2008, 30, 189-200.	1.4	84
13	Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery. Physics in Medicine and Biology, 2014, 59, 4861-4877.	1.6	75
14	Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes. Journal of Controlled Release, 2014, 178, 101-107.	4.8	73
15	Identifying the Inertial Cavitation Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. Ultrasound in Medicine and Biology, 2010, 36, 840-852.	0.7	71
16	Rapid Short-pulse Ultrasound Delivers Drugs Uniformly across the Murine Blood-Brain Barrier with Negligible Disruption. Radiology, 2019, 291, 459-466.	3.6	65
17	Tri-Needle Coaxial Electrospray Engineering of Magnetic Polymer Yolk–Shell Particles Possessing Dual-Imaging Modality, Multiagent Compartments, and Trigger Release Potential. ACS Applied Materials & Interfaces, 2017, 9, 21485-21495.	4.0	62
18	Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure. Journal of the Acoustical Society of America, 2012, 132, 3538-3549.	0.5	60

JAMES JEONG CHOI

#	Article	IF	CITATIONS
19	Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound. Journal of Controlled Release, 2013, 169, 40-47.	4.8	56
20	Exploiting flow to control the <i>in vitro</i> spatiotemporal distribution of microbubble-seeded acoustic cavitation activity in ultrasound therapy. Physics in Medicine and Biology, 2014, 59, 6941-6957.	1.6	37
21	Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions. Journal of the Acoustical Society of America, 2016, 140, 2469-2480.	0.5	37
22	Enhancement of Non-Invasive Trans-Membrane Drug Delivery Using Ultrasound and Microbubbles During Physiologically Relevant Flow. Ultrasound in Medicine and Biology, 2015, 41, 2435-2448.	0.7	36
23	Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound. Journal of the Acoustical Society of America, 2017, 142, 3135-3146.	0.5	36
24	Liposome delivery to the brain with rapid short-pulses of focused ultrasound and microbubbles. Journal of Controlled Release, 2022, 341, 605-615.	4.8	33
25	Targeted Delivery of DNAâ€Au Nanoparticles across the Blood–Brain Barrier Using Focused Ultrasound. ChemMedChem, 2018, 13, 1311-1314.	1.6	27
26	Acoustic particle palpation for measuring tissue elasticity. Applied Physics Letters, 2015, 107, 223701.	1.5	26
27	Superharmonic microbubble Doppler effect in ultrasound therapy. Physics in Medicine and Biology, 2016, 61, 6154-6171.	1.6	15
28	Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics, 2020, 10, 2659-2674.	4.6	15
29	A PZT–PVDF Stacked Transducer for Short-Pulse Ultrasound Therapy and Monitoring. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2164-2171.	1.7	13
30	Displacement of a bubble by acoustic radiation force into a fluid–tissue interface. Journal of the Acoustical Society of America, 2018, 143, 2535-2540.	0.5	12
31	Acoustic Streaming in a Soft Tissue Microenvironment. Ultrasound in Medicine and Biology, 2019, 45, 208-217.	0.7	12
32	Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force. Ultrasound in Medicine and Biology, 2020, 46, 3327-3338.	0.7	12
33	Modulation of amyloid-β aggregation by metal complexes with a dual binding mode and their delivery across the blood–brain barrier using focused ultrasound. Chemical Science, 2021, 12, 9485-9493.	3.7	12
34	Displacement of a bubble located at a fluid-viscoelastic medium interface. Journal of the Acoustical Society of America, 2019, 145, EL410-EL416.	0.5	9
35	Passive acoustic mapping using optimal beamforming for real-time monitoring of ultrasound therapy. Proceedings of Meetings on Acoustics, 2013, , .	0.3	9
36	Imaging With Therapeutic Acoustic Wavelets–Short Pulses Enable Acoustic Localization When Time of Arrival is Combined With Delay and Sum. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 178-190.	1.7	8

JAMES JEONG CHOI

#	Article	IF	CITATIONS
37	The effects of ultrasound parameters and microbubble concentration on acoustic particle palpation. Journal of the Acoustical Society of America, 2018, 144, 796-805.	0.5	7
38	Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1234-1244.	1.7	6
39	Angular dependence of the acoustic signal of a microbubble cloud. Journal of the Acoustical Society of America, 2020, 148, 2958-2972.	0.5	6
40	Noninvasive Blood-Brain Barrier Opening in Live Mice. AIP Conference Proceedings, 2006, , .	0.3	4
41	Characterization and Optimization of Trans-Blood-Brain Barrier Diffusion In Vivo. , 2009, , .		4
42	Passive Cavitation Detection With a Needle Hydrophone Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 233-240.	1.7	4
43	The Dependence of the Ultrasound-Induced Blood-Brain Barrier Opening Characteristics on Microbubble Size In Vivo. , 2009, , .		3
44	In vivo delivery of a fluorescent FPR2/ALX-targeted probe using focused ultrasound and microbubbles to image activated microglia. RSC Chemical Biology, 2020, 1, 385-389.	2.0	3
45	Doppler Passive Acoustic Mapping. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2692-2703.	1.7	3
46	Molecular imaging through the blood-brain barrier: Safety assessment and parameter dependence. , 2009, , .		1
47	Qualitative and Quantitative Analysis of Molecular Delivery Through the Ultrasound-Induced Blood-Brain Barrier Opening in Mice. , 2009, , .		1
48	In vivo transcranial cavitation detection during ultrasound-induced blood-brain barrier opening. , 2010, , .		1
49	Identifying the Inertial Cavitation Pressure Threshold and Skull Effects in a Vessel Phantom Using Focused Ultrasound and Microbubbles. , 2010, , .		1
50	Mechanism and Safety at the Threshold of the Blood-Brain Barrier Opening In Vivo. , 2010, , .		1
51	Notice of Removal: Rapid short-pulse (RaSP) sequences improve the distribution of drug delivery to the brain in vivo. , 2017, , .		1
52	The relationship between bubble concentration and the acoustic emission energy of separate frequency bands. JASA Express Letters, 2022, 2, .	0.5	1
53	Delivery of fluorescent dextrans through the ultrasound-induced blood-brain barrier opening in mice. , 2008, , .		0
54	Quantifying the effects of standing waves within the skull for ultrasound mediated opening of the blood-brain-barrier. , 2021, , .		0

#	Article	IF	CITATIONS
55	DDEL-06. Drug Delivery to the Pons Using Short-Pulse Focused Ultrasound and Microbubble Exposure for the Treatment of Diffuse Midline Glioma. Neuro-Oncology, 2022, 24, i35-i35.	0.6	Ο