J Peter Slotte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4717778/publications.pdf

Version: 2024-02-01

91712 101384 5,162 106 36 69 citations g-index h-index papers 109 109 109 4470 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cholesterol interactions with phospholipids in membranes. Progress in Lipid Research, 2002, 41, 66-97.	5.3	927
2	Biological functions of sphingomyelins. Progress in Lipid Research, 2013, 52, 424-437.	5.3	260
3	Membrane properties of sphingomyelins. FEBS Letters, 2002, 531, 33-37.	1.3	230
4	Cyclodextrin-Mediated Removal of Sterols from Monolayers:  Effects of Sterol Structure and Phospholipids on Desorption Rate. Biochemistry, 1996, 35, 8018-8024.	1.2	185
5	Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1945-1956.	1.4	171
6	Interaction of Cholesterol with Sphingomyelins and Acyl-Chain-Matched Phosphatidylcholines: A Comparative Study of the Effect of the Chain Length. Biophysical Journal, 1999, 76, 908-915.	0.2	162
7	Interaction of Cholesterol with Sphingomyelin in Monolayers and Vesicles. Biochemistry, 1994, 33, 11776-11781.	1.2	156
8	The importance of hydrogen bonding in sphingomyelin's membrane interactions with co-lipids. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 304-310.	1.4	117
9	How the molecular features of glycosphingolipids affect domain formation in fluid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 194-201.	1.4	102
10	Membrane Properties of D-erythro-N-acyl Sphingomyelins and Their Corresponding Dihydro Species. Biophysical Journal, 2001, 80, 2327-2337.	0.2	94
11	Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 111-121.	1.4	89
12	A Calorimetric Study of Binary Mixtures of Dihydrosphingomyelin and Sterols, Sphingomyelin, or Phosphatidylcholine. Biophysical Journal, 2003, 84, 3138-3146.	0.2	83
13	Cholesterol Interactions with Fluid-Phase Phospholipids: Effect on the Lateral Organization of the Bilayer. Biophysical Journal, 2008, 95, 3861-3871.	0.2	83
14	Lateral domain formation in mixed monolayers containing cholesterol and dipalmitoylphosphatidylcholine or N-palmitoylsphingomyelin. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1235, 419-427.	1.4	81
15	Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers. Biochemistry, 1991, 30, 10746-10754.	1.2	80
16	Analysis of natural and synthetic sphingomyelins using high-performance thin-layer chromatography. FEBS Journal, 1999, 266, 997-1002.	0.2	80
17	Domain Formation and Stability in Complex Lipid Bilayers as Reported by Cholestatrienol. Biophysical Journal, 2005, 88, 4054-4063.	0.2	79
18	Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracealipase. Biotechnology and Bioengineering, 1993, 42, 618-624.	1.7	78

#	Article	IF	Citations
19	Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order. Biophysical Journal, 2011, 100, 2633-2641.	0.2	78
20	Effect of Sphingomyelin Headgroup Size on Molecular Properties andÂlnteractions with Cholesterol. Biophysical Journal, 2010, 99, 3300-3308.	0.2	75
21	Construction of a DOPC/PSM/Cholesterol Phase Diagram Based on the Fluorescence Properties of <i>trans</i> -Parinaric Acid. Langmuir, 2011, 27, 8339-8350.	1.6	74
22	Properties of Palmitoyl Phosphatidylcholine, Sphingomyelin, and Dihydrosphingomyelin Bilayer Membranes as Reported by Different Fluorescent Reporter Molecules. Biophysical Journal, 2003, 84, 987-997.	0.2	72
23	Molecular properties of various structurally defined sphingomyelins – Correlation of structure with function. Progress in Lipid Research, 2013, 52, 206-219.	5.3	69
24	Comparison of the Biophysical Properties of Racemic and d-Erythro-N-Acyl Sphingomyelins. Biophysical Journal, 1999, 77, 1498-1506.	0.2	64
25	The Affinity of Cholesterol for Different Phospholipids Affects Lateral Segregation inÂBilayers. Biophysical Journal, 2016, 111, 546-556.	0.2	60
26	Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1718, 61-66.	1.4	58
27	On the Importance of the Phosphocholine Methyl Groups for Sphingomyelin/Cholesterol Interactions in Membranes: A Study with Ceramide Phosphoethanolamine. Biophysical Journal, 2005, 88, 2661-2669.	0.2	53
28	The functional role of sphingomyelin in cell membranes. European Journal of Lipid Science and Technology, 2007, 109, 977-981.	1.0	53
29	2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1390-1395.	1.4	44
30	Effect of anti-tumor ether lipids on ordered domains in model membranes. FEBS Letters, 2006, 580, 2471-2476.	1.3	42
31	Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1008-1013.	1.4	42
32	The rate of sphingomyelin synthesis de novo is influenced by the level of cholesterol in cultured human skin fibroblasts. Biochemical Journal, 1998, 335, 285-291.	1.7	40
33	Sphingomyelin analogs with branched N-acyl chains: The position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1987-1994.	1.4	40
34	Effect of hydrophobic mismatch and interdigitation on sterol/sphingomyelin interaction in ternary bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1940-1945.	1.4	40
35	Molecular Interaction and Lateral Domain Formation in Monolayers Containing Cholesterol and Phosphatidylcholines with Acyl- or Alkyl-Linked C16 Chains. Langmuir, 1996, 12, 1284-1290.	1.6	39
36	Ceramide acyl chain length markedly influences miscibility with palmitoyl sphingomyelin in bilayer membranes. European Biophysics Journal, 2010, 39, 1117-1128.	1.2	37

#	Article	IF	Citations
37	The Influence of Hydrogen Bonding on Sphingomyelin/Colipid Interactions in Bilayer Membranes. Biophysical Journal, 2016, 110, 431-440.	0.2	37
38	N- and O-methylation of sphingomyelin markedly affects its membrane properties and interactions with cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1179-1186.	1.4	35
39	Cholesterol stimulates and ceramide inhibits Sticholysin II-induced pore formation in complex bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 925-931.	1.4	34
40	Thermotropic behavior and lateral distribution of very long chain sphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1310-1320.	1.4	33
41	The Affinity of Sterols for Different Phospholipid Classes and Its Impact on Lateral Segregation. Biophysical Journal, 2019, 116, 296-307.	0.2	33
42	Comparison of Triton X-100 Penetration into Phosphatidylcholine and Sphingomyelin Mono- and Bilayers. Langmuir, 2001, 17, 4724-4730.	1.6	32
43	Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 336-345.	1.4	32
44	Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophysical Journal, 2015, 109, 1639-1651.	0.2	31
45	Effect of Lung Surfactant Protein SP-C and SP-C-Promoted Membrane Fragmentation on Cholesterol Dynamics. Biophysical Journal, 2016, 111, 1703-1713.	0.2	30
46	Effects of Sphingomyelin Headgroup Size on Interactions with Ceramide. Biophysical Journal, 2013, 104, 604-612.	0.2	29
47	Importance of the Sphingoid Base Length for the Membrane Properties ofÂCeramides. Biophysical Journal, 2012, 103, 1870-1879.	0.2	26
48	Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins. Biochemistry, 2016, 55, 6630-6641.	1.2	26
49	The Long-Chain Sphingoid Base of Ceramides Determines Their Propensity for Lateral Segregation. Biophysical Journal, 2017, 112, 976-983.	0.2	24
50	Solvatochromic Modeling of Laurdan for Multiple Polarity Analysis of Dihydrosphingomyelin Bilayer. Biophysical Journal, 2019, 116, 874-883.	0.2	24
51	Enzyme-Catalyzed oxidation of cholesterol in physically characterized water-in-oil microemulsions. Biotechnology and Bioengineering, 1992, 39, 218-224.	1.7	23
52	Desorption of Fatty Acids from Monolayers at the Air/Water Interface to \hat{I}^2 -Cyclodextrin in the Subphase. Langmuir, 1996, 12, 5664-5668.	1.6	23
53	Phosphatidylcholine and sphingomyelin containing an elaidoyl fatty acid can form cholesterol-rich lateral domains in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1839-1847.	1.4	23
54	Lipid Interactions and Organization in Complex Bilayer Membranes. Biophysical Journal, 2016, 110, 1563-1573.	0.2	23

#	Article	IF	CITATIONS
55	Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1189-1195.	1.4	23
56	Glycosylation induces shifts in the lateral distribution of cholesterol from ordered towards less ordered domains. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1100-1111.	1.4	22
57	Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 727-732.	1.4	22
58	Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone <i>Stichodactyla helianthus</i> i>'s Actinoporin Sticholysin II with Biological Membranes. Biochemistry, 2016, 55, 6406-6420.	1.2	22
59	Formation of Gel-like Nanodomains in Cholesterol-Containing Sphingomyelin or Phosphatidylcholine Binary Membrane As Examined by Fluorescence Lifetimes and 2H NMR Spectra. Langmuir, 2015, 31, 13783-13792.	1.6	21
60	Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains. Biophysical Journal, 2019, 117, 1577-1588.	0.2	21
61	Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. Langmuir, 2016, 32, 3476-3484.	1.6	20
62	Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation. Biophysical Journal, 2018, 115, 1530-1540.	0.2	20
63	Lipid-Surrounding Water Molecules Probed by Time-Resolved Emission Spectra of Laurdan. Langmuir, 2019, 35, 6762-6770.	1.6	20
64	Cholesterol-Sphingomyelin Interactions in Cellsâ€"Effects on Lipid Metabolism. Sub-Cellular Biochemistry, 1997, , 277-293.	1.0	20
65	Miscibility of acyl-chain defined phosphatidylcholines with N-palmitoyl sphingomyelin in bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1667, 182-189.	1.4	19
66	Effects of Cholesterol and Saturated Sphingolipids on Acyl Chain Order in 1-Palmitoyl-2-oleoyl- <i>>sn</i> -glycero-3-phosphocholine Bilayersâ€"A Comparative Study with Phase-Selective Fluorophores. Langmuir, 2015, 31, 4255-4263.	1.6	19
67	Formation of an ordered phase by ceramides and diacylglycerols in a fluid phosphatidylcholine bilayer — Correlation with structure and hydrogen bonding capacity. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2111-2117.	1.4	19
68	Effects of Sphingosine 2N- and 3O-Methylation on Palmitoyl Ceramide Properties in Bilayer Membranes. Biophysical Journal, 2011, 101, 2948-2956.	0.2	18
69	N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1715, 49-56.	1.4	15
70	Characterization of membrane properties of inositol phosphorylceramide. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 453-460.	1.4	15
71	Differential Effect of Bilayer Thickness on Sticholysin Activity. Langmuir, 2017, 33, 11018-11027.	1.6	15
72	Stabilization of sphingomyelin interactions by interfacial hydroxyls — A study of phytosphingomyelin properties. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 391-397.	1.4	14

#	Article	IF	Citations
73	Sphingomyelin Acyl Chains Influence the Formation of Sphingomyelin- and Cholesterol-Enriched Domains. Biophysical Journal, 2020, 119, 913-923.	0.2	14
74	Sphingomyelins and ent-Sphingomyelins Form Homophilic Nano-Subdomains within Liquid Ordered Domains. Biophysical Journal, 2020, 119, 539-552.	0.2	14
75	Importance of the phosphocholine linkage on sphingomyelin molecular properties and interactions with cholesterol; a study with phosphate oxygen modified sphingomyelin-analogues. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 1501-1507.	1.4	13
76	Cholesteryl Phosphocholine $\hat{a}\in$ A Study on Its Interactions with Ceramides and Other Membrane Lipids. Langmuir, 2013, 29, 2319-2329.	1.6	13
77	Miscibility of Sphingomyelins and Phosphatidylcholines in Unsaturated Phosphatidylcholine Bilayers. Biophysical Journal, 2015, 109, 1907-1916.	0.2	13
78	Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach. PLoS ONE, 2015, 10, e0143385.	1.1	13
79	Bilayer Interactions among Unsaturated Phospholipids, Sterols, and Ceramide. Biophysical Journal, 2017, 112, 1673-1681.	0.2	12
80	Effect of Phosphatidylcholine Unsaturation on the Lateral Segregation of Palmitoyl Ceramide and Palmitoyl Dihydroceramide in Bilayer Membranes. Langmuir, 2016, 32, 5973-5980.	1.6	11
81	On the Importance of the C(1)–OH and C(3)–OH Functional Groups of the Long-Chain Base of Ceramide for Interlipid Interaction and Lateral Segregation into Ceramide-Rich Domains. Langmuir, 2018, 34, 15864-15870.	1.6	10
82	Membrane Localization and Lipid Interactions of Common Lipid-Conjugated Fluorescence Probes. Langmuir, 2019, 35, 11902-11911.	1.6	10
83	Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction. Biophysical Journal, 2019, 116, 2253-2265.	0.2	10
84	FRET detects lateral interaction between transmembrane domain of EGF receptor and ganglioside GM3 in lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183623.	1.4	10
85	Phosphatidyl alcohols: Effect of head group size on domain forming properties and interactions with sterols. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1615-1622.	1.4	9
86	Interaction of $3\hat{l}^2$ -Amino-5-cholestene with Phospholipids in Binary and Ternary Bilayer Membranes. Langmuir, 2012, 28, 648-655.	1.6	8
87	Oligomerization of Sticholysins from Förster Resonance Energy Transfer. Biochemistry, 2021, 60, 314-323.	1.2	8
88	Structure–activity relationship of sphingomyelin analogs with sphingomyelinase from Bacillus cereus. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 474-480.	1.4	7
89	Cholesterol's interactions with serine phospholipids — A comparison of N-palmitoyl ceramide phosphoserine with dipalmitoyl phosphatidylserine. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 785-791.	1.4	7
90	Nanosized Phase Segregation of Sphingomyelin and Dihydrosphigomyelin in Unsaturated Phosphatidylcholine Binary Membranes without Cholesterol. Langmuir, 2018, 34, 13426-13437.	1.6	7

#	Article	IF	CITATIONS
91	Structural foundations of sticholysin functionality. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140696.	1.1	7
92	The effects of N-acyl chain methylations on ceramide molecular properties in bilayer membranes. European Biophysics Journal, 2011, 40, 857-863.	1.2	6
93	Complexation of C6-Ceramide with Cholesteryl Phosphocholine – A Potent Solvent-Free Ceramide Delivery Formulation for Cells in Culture. PLoS ONE, 2013, 8, e61290.	1.1	6
94	Preparation and Membrane Properties of Oxidized Ceramide Derivatives. Langmuir, 2018, 34, 465-471.	1.6	6
95	Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus. International Journal of Molecular Sciences, 2020, 21, 8915.	1.8	6
96	Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183311.	1.4	6
97	Depth-Dependent Segmental Melting of the Sphingomyelin Alkyl Chain in Lipid Bilayers. Langmuir, 2022, 38, 5515-5524.	1.6	6
98	N-cholesteryl sphingomyelinâ€"A synthetic sphingolipid with unique membrane properties. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1054-1062.	1.4	5
99	Structural and functional characterization of sticholysin III: A newly discovered actinoporin within the venom of the sea anemone Stichodactyla helianthus. Archives of Biochemistry and Biophysics, 2020, 689, 108435.	1.4	5
100	Membrane properties of and cholesterol's interactions with a biologically relevant three-chain sphingomyelin: 30-palmitoyl-N-palmitoyl-D-erythro-sphingomyelin. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2841-2848.	1.4	4
101	Natural Ceramides and Lysophospholipids Cosegregate in Fluid Phosphatidylcholine Bilayers. Biophysical Journal, 2019, 116, 1105-1114.	0.2	4
102	Biophysical approaches to study actinoporin-lipid interactions. Methods in Enzymology, 2021, 649, 307-339.	0.4	4
103	Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers. Biophysical Journal, 2022, 121, 1143-1155.	0.2	4
104	Lateral Segregation of Palmitoyl Ceramide-1-Phosphate in Simple and Complex Bilayers. Biophysical Journal, 2019, 117, 36-45.	0.2	2
105	Nonlamellar-Phase-Promoting Colipids Enhance Segregation of Palmitoyl Ceramide in Fluid Bilayers. Biophysical Journal, 2019, 116, 1507-1515.	0.2	1
106	Preparation of Nitrogen Analogues of Ceramide and Studies of Their Aggregation in Sphingomyelin Bilayers. Langmuir, 2021, 37, 12438-12446.	1.6	1