In-hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716999/publications.pdf

Version: 2024-02-01

516710 526287 27 971 16 27 citations h-index g-index papers 1109 27 27 27 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Recent Advances in Diversityâ€Oriented Polymerization Using Cuâ€Catalyzed Multicomponent Reactions. Macromolecular Rapid Communications, 2022, 43, e2100642.	3.9	9
2	Valorization of Click-Based Microporous Organic Polymer: Generation of Mesoionic Carbene–Rh Species for the Stereoselective Synthesis of Poly(arylacetylene)s. Journal of the American Chemical Society, 2021, 143, 4100-4105.	13.7	15
3	(Iminopyridine)Pd (II) complexes as versatile catalysts for copolymerization and terpolymerization of vinyl arene, ethylene, and carbon monoxide. Applied Organometallic Chemistry, 2021, 35, e6337.	3.5	3
4	Protection-free one-pot synthesis of alcohol end-functionalized poly(3-hexylthiophene). Polymer Journal, 2021, 53, 1205-1211.	2.7	4
5	Investigating Temporal Control in Photoinduced Atom Transfer Radical Polymerization. Macromolecules, 2020, 53, 5280-5288.	4.8	47
6	Synthesis of Conjugated Rod–Coil Block Copolymers by RuPhos Pd-Catalyzed Suzuki–Miyaura Catalyst-Transfer Polycondensation: Initiation from Coil-Type Polymers. Macromolecules, 2020, 53, 5497-5503.	4.8	25
7	RuPhos Pd Precatalyst and MIDA Boronate as an Effective Combination for the Precision Synthesis of Poly(3-hexylthiophene): Systematic Investigation of the Effects of Boronates, Halides, and Ligands. Macromolecules, 2020, 53, 3306-3314.	4.8	26
8	Lowâ€Temperature, Rapid Copolymerization of Acrylic Acid and Sodium Acrylate in Water. Journal of Polymer Science Part A, 2019, 57, 1414-1419.	2.3	3
9	Aqueous reverse iodine transfer polymerization of acrylic acid. Journal of Polymer Science Part A, 2019, 57, 1877-1881.	2.3	3
10	What happens in the dark? Assessing the temporal control of photoâ€mediated controlled radical polymerizations. Journal of Polymer Science Part A, 2019, 57, 268-273.	2.3	81
11	A Rational Design of Highly Controlled Suzuki–Miyaura Catalyst-Transfer Polycondensation for Precision Synthesis of Polythiophenes and Their Block Copolymers: Marriage of Palladacycle Precatalysts with MIDA-Boronates. Journal of the American Chemical Society, 2018, 140, 4335-4343.	13.7	79
12	Endo and Exo Diels–Alder Adducts: Temperature-Tunable Building Blocks for Selective Chemical Functionalization. Journal of the American Chemical Society, 2018, 140, 5009-5013.	13.7	60
13	Effects of Side-Chain Topology on Aggregation of Conjugated Polymers. Macromolecules, 2018, 51, 2580-2590.	4.8	19
14	Dual-pathway chain-end modification of RAFT polymers using visible light and metal-free conditions. Chemical Communications, 2017, 53, 1888-1891.	4.1	41
15	Controlled radical polymerization of vinyl ketones using visible light. Polymer Chemistry, 2017, 8, 3351-3356.	3.9	47
16	Desulfurization–bromination: direct chain-end modification of RAFT polymers. Polymer Chemistry, 2017, 8, 7188-7194.	3.9	16
17	Importance of choosing the right polymerization method for in situ preparation of semiconducting nanoparticles from the P3HT block copolymer. Polymer Chemistry, 2016, 7, 7135-7141.	3.9	17
18	Preparing DNA-mimicking multi-line nanocaterpillars <i>via in situ</i> nanoparticlisation of fully conjugated polymers. Polymer Chemistry, 2016, 7, 1422-1428.	3.9	19

#	Article	IF	Citations
19	Building supermicelles from simple polymers. Science, 2015, 347, 1310-1311.	12.6	8
20	Magnetically recyclable Pdâ€Fe ₃ O ₄ heterodimer nanocrystals for the synthesis of conjugated polymers via suzuki polycondensation: Toward green chemistry. Journal of Polymer Science Part A, 2014, 52, 1525-1528.	2.3	10
21	Magnetoresistance of a copolymer: FeCl3-doped poly(2,5-dioctyloxy-p-phenylene) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 3.9	Tf ₄ 50 662 T
22	One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene. Chemical Communications, 2014, 50, 7945-7948.	4.1	30
23	Preparation of defect-free nanocaterpillars via in situ nanoparticlisation of a well-defined polyacetylene block copolymer. RSC Advances, 2014, 4, 49180-49185.	3.6	22
24	Cu-Catalyzed Multicomponent Polymerization To Synthesize a Library of Poly(<i>N</i> -sulfonylamidines). Journal of the American Chemical Society, 2013, 135, 3760-3763.	13.7	154
25	Nanostar and Nanonetwork Crystals Fabricated by in Situ Nanoparticlization of Fully Conjugated Polythiophene Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 17695-17698.	13.7	75
26	Brush Polymers Containing Semiconducting Polyene Backbones: Graft-Through Synthesis via Cyclopolymerization and Conformational Analysis on the Coil-to-Rod Transition. ACS Macro Letters, 2012, 1, 1098-1102.	4.8	55
27	One-Pot in Situ Fabrication of Stable Nanocaterpillars Directly from Polyacetylene Diblock Copolymers Synthesized by Mild Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society, 2012, 134, 14291-14294.	13.7	99