
Daowei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716997/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oneâ€Step Hydrothermal Synthesis of Nitrogenâ€Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018, 14, e1703919.	10.0	317
2	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	21.0	271
3	Enhanced Biocompatibility of PLGA Nanofibers with Gelatin/Nano-Hydroxyapatite Bone Biomimetics Incorporation. ACS Applied Materials & Interfaces, 2014, 6, 9402-9410.	8.0	116
4	Magnesium Oxideâ€Assisted Dual ross‣inking Bioâ€Multifunctional Hydrogels for Wound Repair during Fullâ€Thickness Skin Injuries. Advanced Functional Materials, 2021, 31, 2105718.	14.9	60
5	Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chemical Science, 2020, 11, 12721-12730.	7.4	54
6	Osteogenic potential of Zn ²⁺ -passivated carbon dots for bone regeneration <i>in vivo</i> . Biomaterials Science, 2019, 7, 5414-5423.	5.4	46
7	Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation. International Journal of Nanomedicine, 2018, Volume 13, 7167-7181.	6.7	37
8	Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. International Journal of Nanomedicine, 2013, 8, 2985.	6.7	32
9	Regulation of FN1 degradation by the p62/SQSTM1-dependent autophagy–lysosome pathway in HNSCC. International Journal of Oral Science, 2020, 12, 34.	8.6	32
10	Metformin Carbon Dots for Promoting Periodontal Bone Regeneration via Activation of ERK/AMPK Pathway. Advanced Healthcare Materials, 2021, 10, e2100196.	7.6	32
11	Hierarchical Polymer Brush Nanoarrays: A Versatile Way to Prepare Multiscale Patterns of Proteins. ACS Applied Materials & Interfaces, 2013, 5, 2126-2132.	8.0	30
12	Elliptical Polymer Brush Ring Array Mediated Protein Patterning and Cell Adhesion on Patterned Protein Surfaces. ACS Applied Materials & Interfaces, 2013, 5, 12587-12593.	8.0	30
13	Enhancement of Osteoinduction by Continual Simvastatin Release from Poly(lactic- <i>co</i> -glycolic acid)-Hydroxyapatite-Simvastatin Nano-Fibrous Scaffold. Journal of Biomedical Nanotechnology, 2013, 9, 1921-1928.	1.1	30
14	A MXene-derived redox homeostasis regulator perturbs the Nrf2 antioxidant program for reinforced sonodynamic therapy. Chemical Science, 2022, 13, 6704-6714.	7.4	30
15	Fluorescent Nanofibrillar Hydrogels of Carbon Dots and Cellulose Nanocrystals and Their Biocompatibility. ACS Sustainable Chemistry and Engineering, 2020, 8, 18492-18499.	6.7	28
16	Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2α-ATF4 pathway. Biomaterials Science, 2020, 8, 2840-2852.	5.4	22
17	Injectable thermosensitive chitosan/gelatin-based hydrogel carried erythropoietin to effectively enhance maxillary sinus floor augmentation in vivo. Dental Materials, 2020, 36, e229-e240.	3.5	20
18	Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. International Journal of Nanomedicine, 2014, 9, 2179.	6.7	19

Daowei Li

#	Article	IF	CITATIONS
19	Reinforced Blood-Derived Protein Hydrogels Enable Dual-Level Regulation of Bio-Physiochemical Microenvironments for Personalized Bone Regeneration with Remarkable Enhanced Efficacy. Nano Letters, 2022, 22, 3904-3913.	9.1	16
20	Construction of hollow polydopamine nanoparticle based drug sustainable release system and its application in bone regeneration. International Journal of Oral Science, 2021, 13, 27.	8.6	15
21	Distinctive role of ACVR1 in dentin formation: requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. Journal of Molecular Histology, 2019, 50, 43-61.	2.2	13
22	Potential of Mesenchymal Stem Cells by Adenovirus-Mediated Erythropoietin Gene Therapy Approaches for Bone Defect. Cell Biochemistry and Biophysics, 2014, 70, 1199-1204.	1.8	12
23	One-pot synthesis of folic acid modified carbonized polymer dots with red emittision for selective imaging of cancer cells. Nanotechnology, 2020, 31, 475501.	2.6	10
24	The effect of synthetic α-tricalcium phosphate on osteogenic differentiation of rat bone mesenchymal stem cells. American Journal of Translational Research (discontinued), 2015, 7, 1588-601.	0.0	8
25	Unraveling an Innate Mechanism of Pathological Mineralizationâ€Regulated Inflammation by a Nanobiomimetic System. Advanced Healthcare Materials, 2021, 10, e2101586.	7.6	6
26	ACVR1 is essential for periodontium development and promotes alveolar bone formation. Archives of Oral Biology, 2018, 95, 108-117.	1.8	4
27	Folicâ€Acidâ€Functionalized Au Nanoclusters with Red Fluorescence Emission for Rapid and Selective Detection of Cancer Cells. ChemistrySelect, 2022, 7, .	1.5	1