Yongpnig Pu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716967/publications.pdf Version: 2024-02-01

YONGPNIC PIL

#	Article	IF	CITATIONS
1	Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chemical Engineering Journal, 2020, 383, 123154.	12.7	246
2	Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics. Journal of Alloys and Compounds, 2019, 775, 342-347.	5.5	176
3	Progress, Outlook, and Challenges in Leadâ€Free Energyâ€Storage Ferroelectrics. Advanced Electronic Materials, 2020, 6, 1900698.	5.1	154
4	High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na _{0.5} Bi _{0.5}) _(1–<i>x</i>) Ba _{<i>x</i>} Ti _{(1–<i>y</i> Ceramics. ACS Sustainable Chemistry and Engineering, 2018, 6, 6102-6109.})< /su7 b>Sr	n≺subbo∙∢i>y∢∥
5	High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. Journal of the European Ceramic Society, 2020, 40, 71-77.	5.7	147
6	Dielectric properties and electrocaloric effect of high-entropy (Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic. Applied Physics Letters, 2019, 115, .	3.3	124
7	Ultra-high energy storage performance under low electric fields in Na0.5Bi0.5TiO3-based relaxor ferroelectrics for pulse capacitor applications. Ceramics International, 2020, 46, 98-105.	4.8	123
8	A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability. Journal of Alloys and Compounds, 2020, 815, 152356.	5.5	110
9	Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe _{0.5} Ta _{0.5})O ₃ , for High Energy-Storage Density at Low Electric Field. ACS Applied Materials & Interfaces, 2017, 9, 29130-29139.	8.0	79
10	High Insulation Resistivity and Ultralow Dielectric Loss in La-Doped SrTiO ₃ Colossal Permittivity Ceramics through Defect Chemistry Optimization. ACS Sustainable Chemistry and Engineering, 2019, 7, 13041-13052.	6.7	76
11	Dielectric temperature stability and energy storage performance of NBTâ€based ceramics by introducing highâ€entropy oxide. Journal of the American Ceramic Society, 2022, 105, 4796-4804.	3.8	73
12	Enhancing the energy storage properties of Ca _{0.5} Sr _{0.5} TiO ₃ -based lead-free linear dielectric ceramics with excellent stability through regulating grain boundary defects. Journal of Materials Chemistry C, 2019, 7, 14384-14393.	5.5	68
13	Flash sintering of barium titanate. Ceramics International, 2019, 45, 7085-7089.	4.8	64
14	Effects of SrO–B2O3–SiO2 glass additive on densification and energy storage properties of Ba0.4Sr0.6TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 1599-1603.	2.2	60
15	Enhanced energy storage properties of (1â^'x)Bi0.5Na0.5TiO3-xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. Materials Letters, 2016, 174, 110-113.	2.6	57
16	Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics. Journal of Materials Science, 2018, 53, 9830-9841.	3.7	45
17	Effect of Dual-Cocatalyst Surface Modification on Photodegradation Activity, Pathway, and Mechanisms with Highly Efficient Ag/BaTiO ₃ /MnO <i>_x</i> . Langmuir, 2020, 36, 498-509.	3.5	38
18	Influence of Sr/Ba ratio on the energy storage properties and dielectric relaxation behaviors of strontium barium titanate ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 4105-4112.	2.2	37

#	Article	IF	CITATIONS
19	Excellent adsorption–photocatalysis synergistic activity of 3D–3D flower-like BiOBr/graphene hydrogel composite and the removal of potassium butyl xanthate. New Journal of Chemistry, 2020, 44, 2479-2488.	2.8	34
20	Dependence of phase configurations, microstructures and magnetic properties of iron-nickel (Fe-Ni) alloy nanoribbons on deoxidization temperature in hydrogen. Scientific Reports, 2016, 6, 37701.	3.3	31
21	Effect of the Reoxidation on Positive Temperature Coefficient Behavior of BaTiO ₃ –Bi _{0.5} Na _{0.5} TiO ₃ . Journal of the American Ceramic Society, 2010, 93, 1527-1529.	3.8	30
22	Ultralow dielectric loss in Yâ€doped SrTiO ₃ colossal permittivity ceramics via designing defect chemistry. Journal of the American Ceramic Society, 2020, 103, 6811-6821.	3.8	27
23	Synthesis and characterizations of NaNbO3 modified 0.92BaTiO3–0.08K0.5Bi0.5TiO3 ceramics for energy storage applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 5158-5162.	2.2	26
24	Enhanced visible light photocatalytic performance of a novel heterostructured Bi ₄ Ti ₃ O ₁₂ /BiOBr photocatalyst. New Journal of Chemistry, 2019, 43, 12932-12940.	2.8	26
25	Strong non-volatile voltage control of magnetization and the magnetodielectric properties in polymer-based sandwich-structured composites. Composites Science and Technology, 2020, 186, 107931.	7.8	24
26	Effects of SrO–B2O3–SiO2 glass additive on the microstructure and dielectric properties of CaCu3Ti4O12. Journal of Materials Science: Materials in Electronics, 2012, 23, 612-617.	2.2	19
27	Influence of Crystallization Temperature on Ferroelectric Properties of Na _{0.9} K _{0.1} NbO ₃ Glass eramics. Journal of the American Ceramic Society, 2015, 98, 2789-2795.	3.8	15
28	Dielectric and Piezoelectric Properties of Bi0.5K0.5TiO3-BaNb2O6 Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials, 2015, 44, 332-340.	2.2	13
29	Enhanced grain size effect on electrical characteristics of fine-grained BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 13229-13235.	2.2	13
30	Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites. Journal of Materials Science: Materials in Electronics, 2017, 28, 11125-11131.	2.2	11
31	Influence of doping Nb5+ and Mn2+ on the PTCR effects of Ba0.92Ca0.05(Bi0.5Na0.5)0.03TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1479-1482.	2.2	10
32	Influence of different nucleating agent additives on phase structure and ferroelectric properties of SrO–BaO–Nb2O5–CaO–SiO2–B2O3 glass-ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 3044-3051.	2.2	10
33	Enhanced ferroelectric and piezoelectric properties of La x Bi (1â^'x) FeO 3 ceramics studied by impedance spectroscopy. Ceramics International, 2017, 43, S115-S120.	4.8	10
34	Structure, dielectric and multiferroic properties of three-layered aurivillius SrBi3Nb2FeO12 ceramics. Ceramics International, 2019, 45, 9283-9287.	4.8	10
35	Fabrication of high Tc lead free (1Ââ~'Âx)BaTiO3–xBi0.5K0.5TiO3 positive temperature coefficient of resistivity ceramics using reoxidation method. Journal of Materials Science: Materials in Electronics, 2011, 22, 551-554.	2.2	9
36	Effects of Kaolinite additions on sintering behavior and dielectric properties of CaCu3Ti4O12 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 546-551.	2.2	9

#	Article	IF	CITATIONS
37	Dielectric Properties of (1-x)BaTiO3-xBaFe12O19Composite Ceramics. Ferroelectrics, 2015, 489, 1-10.	0.6	9
38	Effects of BNT Addition on the Microstructure and PTC Properties of La-Doped BaTiO ₃ -Based PTCR Ceramics. Ferroelectrics, 2010, 403, 91-96.	0.6	8
39	Structural evolution, relaxation behaviors and dielectric properties of BaTiO3–BiAlO3 perovskite solid solutions. Journal of Materials Science: Materials in Electronics, 2016, 27, 11565-11571.	2.2	8
40	Study on Dielectric Properties of SiO2-doped BaTiO3Ceramics. Ferroelectrics, 2016, 492, 10-16.	0.6	8
41	Effects of BaNb2O6 addition on microstructure and dielectric properties of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 3958-3962.	2.2	7
42	Kaolinite as a Suspending Agent for Preparation of Porous BaTiO3 Ceramics via Freeze Casting. Journal of Electronic Materials, 2014, 43, 459-464.	2.2	7
43	Excellent microwave absorption property of the CoFe2O4/Y3Fe5O12 ferrites based on graphene. Journal of Materials Science: Materials in Electronics, 2017, 28, 12866-12872.	2.2	7
44	Effect of KNbO3 on microstructure and electrical properties of lead-free 0.92BaTiO3–0.08K0.5Bi0.5TiO3 ceramic. Journal of Materials Science: Materials in Electronics, 2018, 29, 6556-6563.	2.2	7
45	Novel NBT-based relaxor ferroelectric ceramics with excellent discharge performance and high-temperature stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 23540-23553.	2.2	7
46	Effects of La3+ addition on the phase transition, microstructure, dielectric and piezoelectric properties of Ba0.9Ca0.1Ti0.9Zr0.1O3 ceramics prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 1828-1835.	2.2	6
47	Ferroelectric and Magnetic Properties of SrO-B ₂ O ₃ -SiO ₂ Glass-Doped BiFeO ₃ Ceramics. Ferroelectrics, 2015, 489, 43-50.	0.6	6
48	Correlation between lattice distortion and magnetic and electrical properties of Fe-doped Bi4Ti3O12 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 7484-7489.	2.2	6
49	Influence of SiO2 addition on the PTCR characteristics of Ba0.92(Bi0.5K0.5)0.08TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 6051-6056.	2.2	6
50	Extended dielectric constant step from â^'80 °C to 336 °C in the BaTiO ₃ –BiYO ₃ –Ba(Fe _{0.5} Nb _{0.5})O ₃ system. RSC Advances, 2016, 6, 4296-4301.	3.6	6
51	Microstructures and dielectric properties of (Na0.5Bi0.5)0.775Ba0.225Ti0.775Sn0.225O3 relaxor ferroelectric with Bi2O3–B2O3–ZnO glass addition. Journal of Materials Science: Materials in Electronics, 2019, 30, 11412-11418.	2.2	6
52	Pulse discharge characterization of perovskite dielectric ceramics. Journal of Materials Science, 2021, 56, 9894-9902.	3.7	6
53	Effect of yttrium doping on the structure, dielectric multiferroic and magnetodielectric properties of Bi5Ti3FeO15 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 4345-4353.	2.2	6
54	Effect of reoxidation on positive temperature coefficient of resistance behavior for BaTiO3-K0.5Bi0.5TiO3 ceramics. Journal of Electroceramics, 2013, 30, 98-101.	2.0	5

#	Article	IF	CITATIONS
55	Enhanced dielectric relaxation behavior of Zr doped Ba0.9Ca0.1Zr x Ti1â^'x O3–0.03Bi3+ ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 1275-1281.	2.2	5
56	Dielectric, modulus and impedance analysis of (Ba0.9Bi0.1)(Ti0.9Al0.1)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 4245-4252.	2.2	5
57	Investigation of relaxation phenomena in (Ba,Bi)(Ti,Fe)O3 ceramics by complex impedance spectroscopy. Journal of Materials Science: Materials in Electronics, 2016, 27, 12251-12257.	2.2	4
58	Influence of Replacement of B2O3 by SiO2 on the Structure and Magnetic Properties of BaO-Fe2O3-SiO2-B2O3-CeO2 Glass-Ceramics. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1557-1560.	1.8	4
59	Effect of Bi2O3 and Y2O3 doping methods on electrical properties and PTCR behavior of Ba0.95Ca0.05TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 766-771.	2.2	3
60	Comparative properties of Sr x Ba1Ⱂx TiO3 ferroelectric glass–ceramics prepared by powder sintering and melt casting. Journal of Materials Science: Materials in Electronics, 2015, 26, 5923-5929.	2.2	3
61	Bi ₄ Ti ₃ O ₁₂ Addition in the Ultra-Broad Temperature Stability of BaTiO ₃ -Based Ceramics. Ferroelectrics, 2016, 491, 127-133.	0.6	3
62	Study on the relaxation behavior of BaTiO3 ceramics modified with BiMO3 (M = Fe, Y, Al). Journal of Materials Science: Materials in Electronics, 2017, 28, 16336-16340.	2.2	3
63	Giant Dielectric Behavior and Complex Impedance of Cu2+Doped Ba0.9Ca0.1Ti0.9Zr0.1O3Ceramics Prepared by Hydrothermal Method. Ferroelectrics, 2015, 487, 17-25.	0.6	2
64	PTCR Behavior of CuO-Doped Ba _{0.96} (Bi _{0.5} K _{0.5}) _{0.04} TiO ₃ Ceramics. Ferroelectrics, 2016, 492, 117-125.	0.6	2
65	Impact of mechanical stress on barium titanate-based positive temperature coefficient resistive material. Journal of Materials Science, 2018, 53, 16243-16251.	3.7	2
66	Improvements of microstructures and energy storage properties of Sr0.8(Na0.5Bi0.5)0.2TiO3 ceramics via microwave sintering. Journal of Materials Science: Materials in Electronics, 2019, 30, 12950-12955.	2.2	2
67	Controlling the shape and size of BiOBr sheets by varying the bromine source and reactant concentration. New Journal of Chemistry, 0, , .	2.8	2
68	Lead-free PTCR ceramics based on ytterbium doped (1Ââ^'Âx)BaTiO3-xBi4Ti3O12. Journal of Materials Science: Materials in Electronics, 2012, 23, 1193-1196.	2.2	1
69	Maxwell-Wanger/Debye Effects and Complex Impedance Studies on Bi ₄ Ti ₃ O ₁₂ -0.04Fe ₂ O ₃ Ceramics. Ferroelectrics, 2015, 487, 68-76.	0.6	1
70	Effects of Bi3+ doping of the dielectric and piezoelectric properties of Ba0.9Ca0.1Ti0.9Zr0.1O3 ceramics prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2015, 26, 3025-3034.	2.2	1
71	A comparative study of BaTiO <inf>3</inf> -BaFe <inf>12</inf> O <inf>19</inf> multiferroic composites prepared by conventional and microwave sintering techniques. , 2015, , .		1
72	Dielectric, optical, and multiferroic properties of Co-doped SrBi2Nb1.8Fe0.2O9 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 4719-4731.	2.2	1

#	Article	IF	CITATIONS
73	The Effects of Sintering Temperature on the Properties of Lead-Free <i>x</i> KNbO ₃ - (<i>1-x</i>)BaTiO ₃ Ceramics. Ferroelectrics, 2010, 404, 247-253.	0.6	0
74	Dielectric, electric modulus, ferroelectric and magnetic properties of Bi <inf>1−x</inf> Gd <inf>x</inf> FeO <inf>3</inf> ceramics. , 2015, , .		0
75	Effects of different microwave calcination temperatures on the pure BiFeO <inf>3</inf> ceramics prepared by microwave hydrothermal method. , 2015, , .		0
76	Effects of LiBa2Ta5O15Addition on the Dielectric and Ferroelectric Properties of BaTiO3Ceramics. Ferroelectrics, 2016, 492, 134-142.	0.6	0
77	Improved dielectric temperature stability of 0.7Ba 0.9 Ca 0.1 TiO 3 â~0.3Na 0.5 Bi 0.5 TiO 3 with LiBa 2 Nb 5 O 15 addition. Ceramics International, 2017, 43, S59-S63.	4.8	0
78	Enhanced magnetodielectric behaviors at wide frequency range and high breakdown strength in BiFeO3–LaAlO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 19654-19663.	2.2	0
79	The influence of the distribution of Cu-rich phase on the micromorphology and dielectric properties of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 23146-23155.	2.2	Ο