
Piyusha P Pagare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulating hemoglobin allostery for treatment of sickle cell disease: current progress and intellectual property. Expert Opinion on Therapeutic Patents, 2022, 32, 115-130.	2.4	9
2	Drug discovery efforts toward inhibitors of canonical Wnt/β-catenin signaling pathway in the treatment of cancer: A composition-of-matter review (2010–2020). Drug Discovery Today, 2022, 27, 1115-1127.	3.2	13
3	Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorganic Chemistry, 2022, 120, 105641.	2.0	5
4	Design, Synthesis, and Biological Evaluation of NAP Isosteres: A Switch from Peripheral to Central Nervous System Acting Mu-Opioid Receptor Antagonists. Journal of Medicinal Chemistry, 2022, 65, 5095-5112.	2.9	6
5	Exploration of naphthoquinone analogs in targeting the TCF-DNA interaction to inhibit the Wnt/β-catenin signaling pathway. Bioorganic Chemistry, 2022, 124, 105812.	2.0	4
6	Rational approaches for the design of various GABA modulators and their clinical progression. Molecular Diversity, 2021, 25, 551-601.	2.1	9
7	Development of structure-based pharmacophore to target the β-catenin-TCF protein–protein interaction. Medicinal Chemistry Research, 2021, 30, 429-439.	1.1	3
8	Improving the Solubility and Oral Bioavailability of a Novel Aromatic Aldehyde Antisickling Agent (PP10) for the Treatment of Sickle Cell Disease. Pharmaceutics, 2021, 13, 1148.	2.0	4
9	A Chemical Biology Approach to the Chaperome in Cancer—HSP90 and Beyond. Cold Spring Harbor Perspectives in Biology, 2020, 12, a034116.	2.3	32
10	Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. Journal of Saudi Chemical Society, 2020, 24, 251-266.	2.4	45
11	Structure activity relationship exploration of 5-hydroxy-2-(3-phenylpropyl)chromones as a unique 5-HT2B receptor antagonist scaffold. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127511.	1.0	5
12	Exploration of Structure–Activity Relationship of Aromatic Aldehydes Bearing Pyridinylmethoxy-Methyl Esters as Novel Antisickling Agents. Journal of Medicinal Chemistry, 2020, 63, 14724-14739.	2.9	7
13	VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions. Scientific Reports, 2020, 10, 20277.	1.6	14
14	Structural modification of azolylacryloyl derivatives yields a novel class of covalent modifiers of hemoglobin as potential antisickling agents. MedChemComm, 2019, 10, 1900-1906.	3.5	6
15	PP-14, a Novel Structurally-Enhanced Antisickling Allosteric Hemoglobin Effector, Increases Oxygen Affinity and Disrupts Hemoglobin S Polymer Formation. Blood, 2019, 134, 73-73.	0.6	1
16	Calpain-1 Contributes to Pain and Organ Damage in Sickle Cell Disease. Blood, 2019, 134, 76-76.	0.6	0
17	Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorganic and Medicinal Chemistry, 2018, 26, 2530-2538.	1.4	26
18	Rational modification of vanillin derivatives to stereospecifically destabilize sickle hemoglobin polymer formation. Acta Crystallographica Section D: Structural Biology, 2018, 74, 956-964.	1.1	15

#	Article	IF	CITATIONS
19	Understanding the role of glucose regulated protein 170 (GRP170) as a nucleotide exchange factor through molecular simulations. Journal of Molecular Graphics and Modelling, 2018, 85, 160-170.	1.3	7
20	Understanding molecular interactions between scavenger receptor A and its natural product inhibitors through molecular modeling studies. Journal of Molecular Graphics and Modelling, 2017, 77, 189-199.	1.3	4
21	Design, Synthesis, and Biological Evaluation of Ester and Ether Derivatives of Antisickling Agent 5-HMF for the Treatment of Sickle Cell Disease. Molecular Pharmaceutics, 2017, 14, 3499-3511.	2.3	39
22	Design, synthesis, and characterization of rhein analogs as novel inhibitors of scavenger receptor A. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 72-76.	1.0	3
23	Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation. Journal of Structural Biology, 2016, 194, 446-450.	1.3	30