Zheng Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/4716534/zheng-hu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,456 46 135 101 h-index g-index citations papers 6.21 10.9 11,712 142 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
135	Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7132-5	16.4	983
134	Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1201-4	16.4	737
133	Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. <i>Advanced Materials</i> , 2012 , 24, 5593-7, 5646	24	629
132	Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance. <i>Advanced Materials</i> , 2015 , 27, 3541-5	24	573
131	Carbon nanocages as supercapacitor electrode materials. <i>Advanced Materials</i> , 2012 , 24, 347-52	24	441
130	Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. <i>Advanced Materials</i> , 2019 , 31, e1804799	24	412
129	Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity. <i>ACS Catalysis</i> , 2015 , 5, 6707-6712	13.1	400
128	Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. <i>Angewandte Chemie</i> , 2011 , 123, 7270-7273	3.6	314
127	Porous 3D Few-Layer Graphene-like Carbon for Ultrahigh-Power Supercapacitors with Well-Defined Structure-Performance Relationship. <i>Advanced Materials</i> , 2017 , 29, 1604569	24	310
126	Recent advances in understanding of the mechanism and control of LiO formation in aprotic Li-O batteries. <i>Chemical Society Reviews</i> , 2017 , 46, 6046-6072	58.5	235
125	Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithiumBulfur batteries. <i>Nano Energy</i> , 2015 , 12, 657-665	17.1	196
124	CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. <i>Energy and Environmental Science</i> , 2009 , 2, 224-229	35.4	196
123	Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction. <i>ACS Catalysis</i> , 2017 , 7, 6864-6871	13.1	189
122	An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode. <i>Electroanalysis</i> , 2003 , 15, 219-224	3	188
121	Facile Construction of Pt-Co/CNx Nanotube Electrocatalysts and Their Application to the Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2009 , 21, 4953-4956	24	185
120	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. <i>Energy and Environmental Science</i> , 2016 , 9, 2053-2060	35.4	180
119	Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahigh-Volumetric-Performance Supercapacitors. <i>Advanced Materials</i> , 2017 , 29, 1700470	24	178

(2018-2014)

118	Promotion Effects of Nitrogen Doping into Carbon Nanotubes on Supported Iron Fischer Tropsch Catalysts for Lower Olefins. <i>ACS Catalysis</i> , 2014 , 4, 613-621	13.1	178
117	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2017 , 17, 7839-7846	11.5	172
116	From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage. <i>Accounts of Chemical Research</i> , 2017 , 50, 435-444	24.3	162
115	Synthesis and Optical Characterization of Aluminum Nitride Nanobelts. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 9726-9729	3.4	150
114	Alloyed CoMo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. <i>ACS Catalysis</i> , 2015 , 5, 1857-1862	13.1	149
113	CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. <i>Journal of Materials Chemistry</i> , 2008 , 18, 1747		146
112	The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. <i>Nature Communications</i> , 2019 , 10, 1657	17.4	144
111	Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Sol © el Method. <i>Crystal Growth and Design</i> , 2010 , 10, 430-439	3.5	141
110	Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. <i>Nano Energy</i> , 2018 , 52, 485-493	17.1	131
109	2D Single-Crystalline Molecular Semiconductors with Precise Layer Definition Achieved by Floating-Coffee-Ring-Driven Assembly. <i>Advanced Functional Materials</i> , 2016 , 26, 3191-3198	15.6	113
108	Extended vapor Ilquid I		111
107	In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. <i>Journal of the American Chemical Society</i> , 2004 , 126, 1180-3	16.4	100
106	Synergism of C5N six-membered ring and vapor-liquid-solid growth of CN(x) nanotubes with pyridine precursor. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16422-7	3.4	96
105	Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(II) oxide microballs. <i>Energy and Environmental Science</i> , 2012 , 5, 8896	35.4	94
104	Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. <i>Nano Energy</i> , 2019 , 57, 34-40	17.1	73
103	Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1702		70
102	Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design. <i>Nano Energy</i> , 2017 , 36, 68-75	17.1	69
101	CoO-modified Co4N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 24767-24772	13	69

100	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. <i>Nano Research</i> , 2015 , 8, 3535-3543	10	64
99	Encapsulation of Iron Nitride by FeNII Shell Enabling Highly Efficient Electroreduction of CO2 to CO. ACS Energy Letters, 2018 , 3, 1205-1211	20.1	60
98	A practical route to the production of carbon nanocages. <i>Carbon</i> , 2005 , 43, 1667-1672	10.4	59
97	6-Fold-Symmetrical AlN Hierarchical Nanostructures: Synthesis and Field-Emission Properties. Journal of Physical Chemistry C, 2009 , 113, 4053-4058	3.8	58
96	Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation. <i>Scientific Reports</i> , 2014 , 4, 7227	4.9	57
95	Direct immobilization of $Pt\mathbf{R}u$ alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. <i>Journal of Power Sources</i> , 2010 , 195, 7578-7582	8.9	51
94	Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. <i>Journal of Energy Chemistry</i> , 2019 , 34, 64-71	12	50
93	Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metal-Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media. <i>Chemistry - A European Journal</i> , 2016 , 22, 10326-9	4.8	49
92	Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. <i>New Journal of Chemistry</i> , 2012 , 36, 1108	3.6	48
91	Aligned ZnO Nanorods with Tunable Size and Field Emission on Native Si Substrate Achieved via Simple Electrodeposition. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 189-193	3.8	47
90	Self-templated synthesis of polycrystalline hollow aluminium nitride nanospheres. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2834		47
89	Multiple-Step Humidity-Induced Single-Crystal to Single-Crystal Transformations of a Cobalt Phosphonate: Structural and Proton Conductivity Studies. <i>Inorganic Chemistry</i> , 2016 , 55, 3706-12	5.1	45
88	Carbon-Based Nanocages: A New Platform for Advanced Energy Storage and Conversion. <i>Advanced Materials</i> , 2020 , 32, e1904177	24	45
87	Is iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. <i>Catalysis Science and Technology</i> , 2017 , 7, 51-55	5.5	42
86	Zinc-Tiered Synthesis of 3D Graphene for Monolithic Electrodes. <i>Advanced Materials</i> , 2019 , 31, e19011	8624	42
85	A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. <i>Chinese Journal of Catalysis</i> , 2013 , 34, 1986-1991	11.3	39
84	Sub-nanometer-scale fine regulation of interlayer distance in Nito layered double hydroxides leading to high-rate supercapacitors. <i>Nano Energy</i> , 2020 , 76, 105026	17.1	38
83	Enhanced cold field emission of large-area arrays of vertically aligned ZnO-nanotapers via sharpening: experiment and theory. <i>Scientific Reports</i> , 2014 , 4, 4676	4.9	35

(2011-2012)

82	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19679		35
81	Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst. <i>Journal of Materials Chemistry</i> , 2012 , 22, 11927		35
80	Investigation of Ni PB ultrafine amorphous alloy particles produced by chemical reduction. <i>Journal of Applied Physics</i> , 1992 , 71, 5217-5221	2.5	35
79	Efficient Ternary Synergism of Platinum/Tin Oxide/Nitrogen-Doped Carbon Leading to High-Performance Ethanol Oxidation. <i>ACS Catalysis</i> , 2018 , 8, 8477-8483	13.1	32
78	Carbon monoxide hydrogenation on Fe2O3/ZrO2 catalysts. <i>Catalysis Letters</i> , 1996 , 36, 139-144	2.8	32
77	Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium-sulfur battery performance. <i>Chemical Communications</i> , 2019 , 55, 6365-6368	5.8	31
76	In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. <i>Nano Research</i> , 2020 , 13, 328-334	10	31
75	Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. <i>Science Bulletin</i> , 2011 , 56, 3583-3589		31
74	A study of Fe-Ni-B ultrafine alloy particles produced by reduction with borohydride. <i>Journal of Applied Physics</i> , 1991 , 70, 436-438	2.5	31
73	Stabilizing the active phase of iron-based Fischer-Tropsch catalysts for lower olefins: mechanism and strategy. <i>Chemical Science</i> , 2019 , 10, 6083-6090	9.4	30
72	Artificial Construction of the Magnetically Separable Nanocatalyst by Anchoring Pt Nanoparticles on Functionalized Carbon-Encapsulated Nickel Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 472-475	3.8	30
71	Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. <i>Nanoscale</i> , 2016 , 8, 8480-5	7.7	28
70	Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. <i>Nano Research</i> , 2020 , 13, 2777-2783	10	25
69	Axial ligand effect on the stability of FeNC electrocatalysts for acidic oxygen reduction reaction. <i>Nano Energy</i> , 2020 , 78, 105128	17.1	25
68	Superionic conductor-mediated growth of ternary ZnCdS nanorods over a wide composition range. <i>Nano Research</i> , 2015 , 8, 584-591	10	24
67	The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction. <i>Applied Physics Letters</i> , 1991 , 59, 3545-3546	3.4	24
66	Carbon-Based Nanocages: Carbon-Based Nanocages: A New Platform for Advanced Energy Storage and Conversion (Adv. Mater. 27/2020). <i>Advanced Materials</i> , 2020 , 32, 2070206	24	23
65	Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation. <i>Nanotechnology</i> , 2011 , 22, 395401	3.4	23

64	Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. <i>Science China Chemistry</i> , 2020 , 63, 665-681	7.9	22
63	Alcohol-Tolerant Platinum Electrocatalyst for Oxygen Reduction by Encapsulating Platinum Nanoparticles inside Nitrogen-Doped Carbon Nanocages. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2016 , 8, 16664-9	9.5	22
62	Tuning the field emission properties of AlN nanocones by doping. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1113-1117	7.1	21
61	Achieving Ultrahigh Volumetric Energy Storage by Compressing Nitrogen and Sulfur Dual-Doped Carbon Nanocages via Capillarity. <i>Advanced Materials</i> , 2020 , 32, e2004632	24	21
60	Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. <i>Carbon</i> , 2016 , 103, 480-487	10.4	19
59	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21313-21319	13	19
58	Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts. <i>ChemSusChem</i> , 2015 , 8, 4266-74	8.3	18
57	Structural and Compositional Regulation of Nitrogen-Doped Carbon Nanotubes with Nitrogen-Containing Aromatic Precursors. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 7811-7817	3.8	18
56	Encapsulation of Red Phosphorus in Carbon Nanocages with Ultrahigh Content for High-Capacity and Long Cycle Life Sodium-Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 5679-5688	16.7	18
55	Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction. <i>Science China Chemistry</i> , 2015 , 58, 180-186	7.9	17
54	A general strategy to construct yolk-shelled metal oxides inside carbon nanocages for high-stable lithium-ion battery anodes. <i>Nano Energy</i> , 2020 , 68, 104368	17.1	17
53	Identifying Iron-Nitrogen/Carbon Active Structures for Oxygen Reduction Reaction under the Effect of Electrode Potential. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 2896-2901	6.4	16
52	Deposition-Pressure-Induced Optimization of Molecular Packing for High-Performance Organic Thin-Film Transistors Based on Copper Phthalocyanine. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 4287	-4292	16
51	High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 1149-1155	11.3	16
50	Promoting the Electrochemical Performances by Chemical Depositing of Gold Nanoparticles Inside Pores of 3D Nitrogen-Doped Carbon Nanocages. <i>ACS Applied Materials & Deposition (Control of Control of</i>	-34976	5 ¹⁵
49	Six-Membered-Ring-Based Radical Mechanism for Catalytic Growth of Carbon Nanotubes with Benzene Precursor. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16495-16502	3.8	15
48	Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. <i>Science Bulletin</i> , 2017 , 62, 1365-1372	10.6	13
47	Formation of ultrafine amorphous alloy particles with uniform size by autocatalytic method. Journal of Materials Science Letters, 1993 , 12, 1020-1021		13

(2000-2017)

46	Ruthenium-Functionalized Hierarchical Carbon Nanocages as Efficient Catalysts for Li-O2 Batteries. <i>ChemNanoMat</i> , 2017 , 3, 415-419	3.5	12
45	Spinel Nickel Cobaltite Mesostructures Assembled from Ultrathin Nanosheets for High-Performance Electrochemical Energy Storage. <i>ACS Applied Energy Materials</i> , 2018 , 1, 684-691	6.1	11
44	Synthesis of alloyed Zn1MnxS nanowires with completely controlled compositions and tunable bandgaps. <i>RSC Advances</i> , 2018 , 8, 374-379	3.7	11
43	Improving field emission by constructing CsIAlN hybrid nanostructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 18578		11
42	Doping sp2 carbon to boost the activity for oxygen reduction in an acidic medium: a theoretical exploration. <i>RSC Advances</i> , 2016 , 6, 48498-48503	3.7	11
41	SolutionBolidBolid growth of metastable wurtzite EMnS nanowires with controlled length. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6493-6496	7.1	9
40	Design of Thiazolo[5,4-d]thiazole-Bridged Ionic Covalent Organic Polymer for Highly Selective Oxygen Reduction to H2O2. <i>Chemistry of Materials</i> , 2020 , 32, 8553-8560	9.6	9
39	Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution. <i>Nano Research</i> , 2021 , 14, 4220	10	9
38	Anion-induced morphological regulation of In(OH)3 nanostructures and their conversion into porous In2O3 derivatives. <i>CrystEngComm</i> , 2012 , 14, 3397	3.3	8
37	Morphology-controlled growth of chromium silicide nanostructures and their field emission properties. <i>CrystEngComm</i> , 2012 , 14, 1659-1664	3.3	8
36	Modified redox synthesis and electrochemical properties of potassium manganese oxide nanowires. <i>Journal of Materials Chemistry</i> , 2011 , 21, 17904		8
35	Free-Standing Monolithic Sulfur Cathode of Reduced Graphene Oxide Wrapped Sulfur-Filled Carbon Nanocages with High Areal Capacity. <i>Acta Chimica Sinica</i> , 2018 , 76, 627	3.3	8
34	Vertically Grown Few-Layer MoS Nanosheets on Hierarchical Carbon Nanocages for Pseudocapacitive Lithium Storage with Ultrahigh-Rate Capability and Long-Term Recyclability. <i>Chemistry - A European Journal</i> , 2019 , 25, 3843-3848	4.8	8
33	Effective enhancement of electrochemical energy storage of cobalt-based nanocrystals by hybridization with nitrogen-doped carbon nanocages. <i>Science China Materials</i> , 2019 , 62, 1393-1402	7.1	7
32	The Influence of Pd Particles Distribution Position on Pd/CNTs Catalyst for Acetylene Selective Hydrogenation. <i>Catalysis Letters</i> , 2014 , 144, 2198-2203	2.8	7
31	Carbon Nanocages: Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 41/2012). <i>Advanced Materials</i> , 2012 , 24, 5646-5646	24	7
30	Supercapacitor Nanostructures: Carbon Nanocages as Supercapacitor Electrode Materials (Adv. Mater. 3/2012). <i>Advanced Materials</i> , 2012 , 24, 346-346	24	6
29	A Facile Method of Synthesis of a Calix[4]arene Amide and the Crystal Structure of a Self-assembled Calix[4]arene Amide via van Der Waals Interaction. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2000 , 36, 473-478		6

28	Carbon Nanocages Supported LiFePO4Nanoparticles as High-Performance Cathode for Lithium Ion Batteries. <i>Acta Chimica Sinica</i> , 2014 , 72, 653	3.3	6
27	Low-voltage organic field-effect transistors based on novel high-lorganometallic lanthanide complex for gate insulating materials. <i>AIP Advances</i> , 2014 , 4, 087140	1.5	5
26	Field emission of comb-like chromium disilicide nanowires prepared by an in situ chloride-generated route. <i>Applied Physics A: Materials Science and Processing</i> , 2011 , 103, 67-72	2.6	5
25	Chloride Ion as Redox Mediator in Reducing Charge Overpotential of Aprotic Lithium-Oxygen Batteries. <i>Batteries and Supercaps</i> , 2021 , 4, 232-239	5.6	5
24	Pentacene thin film transistor with low threshold voltage and high mobility by inserting a thin metal phthalocyanines interlayer. <i>Science China Technological Sciences</i> , 2012 , 55, 417-420	3.5	4
23	Scanning transmission X-ray microscopy and X-ray absorption near-edge structure studies of N-doped carbon nanotubes sealed with N2 gas. <i>Journal of Applied Physics</i> , 2012 , 111, 124318	2.5	4
22	Synthesis and Electrocatalytic Oxygen Reduction Performance of the Sulfur-Doped Carbon Nanocages. <i>Acta Chimica Sinica</i> , 2014 , 72, 1070	3.3	4
21	Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. <i>Science China Materials</i> , 2021 , 64, 2173-2181	7.1	4
20	Morphology and composition evolution of one-dimensional InxAl1N nanostructures induced by the vapour pressure ratio. <i>CrystEngComm</i> , 2016 , 18, 213-217	3.3	3
19	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. <i>EnergyChem</i> , 2021 , 3, 100066	36.9	3
18	Phase-equilibrium-dominated vapor-liquid-solid mechanism: further evidence. <i>Science China Materials</i> , 2016 , 59, 20-27	7.1	2
17	Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration. <i>AIP Advances</i> , 2014 , 4, 067126	1.5	2
16	Field-emission of TiSi2 thin film deposited by an in situ chloride-generated route. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2010 , 28, 1093-1096	1.3	2
15	Synthesis of carbon nanowires using dc pulsed corona discharge plasma reaction. <i>Journal of Materials Science</i> , 2004 , 39, 283-284	4.3	2
14	Nonmacrocyclic Iron(II) Soluble Redox Mediators Leading to High-Rate Li D 2 Battery. <i>CCS Chemistry</i> , 2021 , 3, 1350-1358	7.2	2
13	Carbon-Based, Metal-Free Catalysts for Electrocatalysis of ORR 2018 , 335-368		2
12	Thermally Conductive AlN-Network Shield for Separators to Achieve Dendrite-Free Plating and Fast Li-Ion Transport toward Durable and High-Rate Lithium-Metal Anodes <i>Advanced Science</i> , 2022 , e22004	1173.6	2
11	Fullerene-Related Nanocarbons and Their Applications. <i>Journal of Nanotechnology</i> , 2012 , 2012, 1-2	3.5	1

LIST OF PUBLICATIONS

10	Growth mechanism, structural regulation and functionalization of carbon-based nanotubes 2010,		1
9	Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles. <i>Science in China Series B: Chemistry</i> , 1997 , 40, 261-269		1
8	Surface state and catalytic activity of ultrafine amorphous NiB alloy particles prepared by chemical reduction. <i>Journal of Materials Science Letters</i> , 1993 , 12, 596-597		1
7	Hierarchical Carbon Nanocages as Efficient Catalysts for Oxidative Coupling of Benzylamine to N-Benzylidene Benzylamine. <i>Acta Chimica Sinica</i> , 2021 , 79, 539	3.3	1
6	Constructing monolithic sulfur cathodes with multifunctional N,P dual-doped carbon nanocages to achieve high-areal-capacity lithium-sulfur batteries. <i>FlatChem</i> , 2021 , 28, 100253	5.1	1
5	The Composite-Template Method to Construct Hierarchical Carbon Nanocages for Supercapacitors with Ultrahigh Energy and Power Densities <i>Small</i> , 2022 , e2107082	11	1
4	Enhancing the Reduction Kinetics of Li?SF Batteries by Dispersed Cobalt Phthalocyanines on Porous Carbon. <i>Small</i> , 2021 , 17, e2103778	11	О
3	Carbon Nanocages//Tungsten Trioxide Nanorods Supercapacitors with in situ Polymerized Gel Electrolytes. <i>Acta Chimica Sinica</i> , 2021 , 79, 755	3.3	O
2	Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. <i>Nano Research</i> ,1	10	О
1	Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metal-Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media. <i>Chemistry - A European Journal</i> , 2016 , 22, 10261-10	02 <i>6</i> 18	