List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716534/publications.pdf Version: 2024-02-01

ZHENC HU

#	Article	lF	CITATIONS
1	Boronâ€Doped Carbon Nanotubes as Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2011, 50, 7132-7135.	7.2	1,121
2	Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?. Journal of the American Chemical Society, 2013, 135, 1201-1204.	6.6	855
3	Nitrogenâ€Doped Carbon Nanocages as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 5593-5597.	11.1	693
4	Hydrophilic Hierarchical Nitrogenâ€Đoped Carbon Nanocages for Ultrahigh Supercapacitive Performance. Advanced Materials, 2015, 27, 3541-3545.	11.1	680
5	Carbonâ€Based Metalâ€Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Advanced Materials, 2019, 31, e1804799.	11.1	649
6	Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity. ACS Catalysis, 2015, 5, 6707-6712.	5.5	519
7	Carbon Nanocages as Supercapacitor Electrode Materials. Advanced Materials, 2012, 24, 347-352.	11.1	508
8	Porous 3D Few‣ayer Grapheneâ€like Carbon for Ultrahighâ€Power Supercapacitors with Wellâ€Defined Structure–Performance Relationship. Advanced Materials, 2017, 29, 1604569.	11.1	358
9	Recent advances in understanding of the mechanism and control of Li ₂ O ₂ formation in aprotic Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 6046-6072.	18.7	314
10	Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2017, 7, 6864-6871.	5.5	256
11	Compressing Carbon Nanocages by Capillarity for Optimizing Porous Structures toward Ultrahighâ€Volumetricâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1700470.	11.1	243
12	Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy, 2015, 12, 657-665.	8.2	231
13	The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nature Communications, 2019, 10, 1657.	5.8	220
14	Promotion Effects of Nitrogen Doping into Carbon Nanotubes on Supported Iron Fischer–Tropsch Catalysts for Lower Olefins. ACS Catalysis, 2014, 4, 613-621.	5.5	218
15	Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy and Environmental Science, 2016, 9, 2053-2060.	15.6	212
16	CNx nanofibers converted from polypyrrole nanowires as platinum support for methanol oxidation. Energy and Environmental Science, 2009, 2, 224-229.	15.6	209
17	Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 7839-7846.	4.5	206
18	An Amperometric Biosensor Based on the Coimmobilization of Horseradish Peroxidase and Methylene Blue on a Carbon Nanotubes Modified Electrode. Electroanalysis, 2003, 15, 219-224.	1.5	205

#	Article	IF	CITATIONS
19	Facile Construction of Pt–Co/CN _{<i>x</i>} Nanotube Electrocatalysts and Their Application to the Oxygen Reduction Reaction. Advanced Materials, 2009, 21, 4953-4956.	11.1	202
20	From Carbon-Based Nanotubes to Nanocages for Advanced Energy Conversion and Storage. Accounts of Chemical Research, 2017, 50, 435-444.	7.6	196
21	Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy, 2018, 52, 485-493.	8.2	188
22	Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catalysis, 2015, 5, 1857-1862.	5.5	172
23	CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. Journal of Materials Chemistry, 2008, 18, 1747.	6.7	164
24	Synthesis of Nanostructured Tungsten Oxide Thin Films: A Simple, Controllable, Inexpensive, Aqueous Solâ~'Gel Method. Crystal Growth and Design, 2010, 10, 430-439.	1.4	164
25	Synthesis and Optical Characterization of Aluminum Nitride Nanobelts. Journal of Physical Chemistry B, 2003, 107, 9726-9729.	1.2	162
26	2D Singleâ€Crystalline Molecular Semiconductors with Precise Layer Definition Achieved by Floatingâ€Coffeeâ€Ringâ€Driven Assembly. Advanced Functional Materials, 2016, 26, 3191-3198.	7.8	136
27	Extended vapor–liquid–solid growth and field emission properties of aluminium nitride nanowires. Journal of Materials Chemistry, 2003, 13, 2024-2027.	6.7	122
28	In Situ TA-MS Study of the Six-Membered-Ring-Based Growth of Carbon Nanotubes with Benzene Precursor. Journal of the American Chemical Society, 2004, 126, 1180-1183.	6.6	105
29	Synergism of C5N Six-Membered Ring and Vaporâ^'Liquidâ^'Solid Growth of CNxNanotubes with Pyridine Precursor. Journal of Physical Chemistry B, 2006, 110, 16422-16427.	1.2	105
30	CoO-modified Co ₄ N as a heterostructured electrocatalyst for highly efficient overall water splitting in neutral media. Journal of Materials Chemistry A, 2018, 6, 24767-24772.	5.2	105
31	Efficient synergism of electrocatalysis and physical confinement leading to durable high-power lithium-sulfur batteries. Nano Energy, 2019, 57, 34-40.	8.2	104
32	Improved photocurrents for p-type dye-sensitized solar cells using nano-structured nickel(ii) oxide microballs. Energy and Environmental Science, 2012, 5, 8896.	15.6	99
33	Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design. Nano Energy, 2017, 36, 68-75.	8.2	93
34	Encapsulation of Iron Nitride by Fe–N–C Shell Enabling Highly Efficient Electroreduction of CO ₂ to CO. ACS Energy Letters, 2018, 3, 1205-1211.	8.8	84
35	Carbonâ€Based Nanocages: A New Platform for Advanced Energy Storage and Conversion. Advanced Materials, 2020, 32, e1904177.	11.1	84
36	Nitrogen-doped carbon nanotubes functionalized by transition metal atoms: a density functional study. Journal of Materials Chemistry, 2010, 20, 1702.	6.7	82

#	Article	IF	CITATIONS
37	Sub-nanometer-scale fine regulation of interlayer distance in Ni–Co layered double hydroxides leading to high-rate supercapacitors. Nano Energy, 2020, 76, 105026.	8.2	77
38	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research, 2015, 8, 3535-3543.	5.8	71
39	Hierarchical sulfur and nitrogen co-doped carbon nanocages as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2019, 34, 64-71.	7.1	69
40	Zincâ€Tiered Synthesis of 3D Graphene for Monolithic Electrodes. Advanced Materials, 2019, 31, e1901186.	11.1	68
41	Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation. Scientific Reports, 2014, 4, 7227.	1.6	67
42	6-Fold-Symmetrical AlN Hierarchical Nanostructures: Synthesis and Field-Emission Properties. Journal of Physical Chemistry C, 2009, 113, 4053-4058.	1.5	66
43	A practical route to the production of carbon nanocages. Carbon, 2005, 43, 1667-1672.	5.4	63
44	Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metalâ€Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media. Chemistry - A European Journal, 2016, 22, 10326-10329.	1.7	59
45	Achieving Ultrahigh Volumetric Energy Storage by Compressing Nitrogen and Sulfur Dualâ€Doped Carbon Nanocages via Capillarity. Advanced Materials, 2020, 32, e2004632.	11.1	56
46	Direct immobilization of Pt–Ru alloy nanoparticles on nitrogen-doped carbon nanotubes with superior electrocatalytic performance. Journal of Power Sources, 2010, 195, 7578-7582.	4.0	54
47	Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. New Journal of Chemistry, 2012, 36, 1108.	1.4	54
48	Axial ligand effect on the stability of Fe–N–C electrocatalysts for acidic oxygen reduction reaction. Nano Energy, 2020, 78, 105128.	8.2	54
49	In situ construction of porous hierarchical (Ni3-xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Research, 2020, 13, 328-334.	5.8	52
50	Self-templated synthesis of polycrystalline hollow aluminium nitride nanospheres. Journal of Materials Chemistry, 2006, 16, 2834.	6.7	50
51	Aligned ZnO Nanorods with Tunable Size and Field Emission on Native Si Substrate Achieved via Simple Electrodeposition. Journal of Physical Chemistry C, 2010, 114, 189-193.	1.5	50
52	ls iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. Catalysis Science and Technology, 2017, 7, 51-55.	2.1	50
53	Multiple-Step Humidity-Induced Single-Crystal to Single-Crystal Transformations of a Cobalt Phosphonate: Structural and Proton Conductivity Studies. Inorganic Chemistry, 2016, 55, 3706-3712.	1.9	49
54	Synthesis of large-scale undoped and nitrogen-doped amorphous graphene on MgO substrate by chemical vapor deposition. Journal of Materials Chemistry, 2012, 22, 19679.	6.7	48

#	Article	IF	CITATIONS
55	Mesostructured carbon-based nanocages: an advanced platform for energy chemistry. Science China Chemistry, 2020, 63, 665-681.	4.2	48
56	Encapsulation of Red Phosphorus in Carbon Nanocages with Ultrahigh Content for High-Capacity and Long Cycle Life Sodium-Ion Batteries. ACS Nano, 2021, 15, 5679-5688.	7.3	47
57	Advanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Research, 2020, 13, 2777-2783.	5.8	46
58	Carbonâ€Based Nanocages: Carbonâ€Based Nanocages: A New Platform for Advanced Energy Storage and Conversion (Adv. Mater. 27/2020). Advanced Materials, 2020, 32, 2070206.	11.1	46
59	Electrocatalysis of S-doped carbon with weak polysulfide adsorption enhances lithium–sulfur battery performance. Chemical Communications, 2019, 55, 6365-6368.	2.2	45
60	Efficient Ternary Synergism of Platinum/Tin Oxide/Nitrogen-Doped Carbon Leading to High-Performance Ethanol Oxidation. ACS Catalysis, 2018, 8, 8477-8483.	5.5	44
61	A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chinese Journal of Catalysis, 2013, 34, 1986-1991.	6.9	42
62	Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution. Nano Research, 2021, 14, 4220-4226.	5.8	42
63	Stabilizing the active phase of iron-based Fischer–Tropsch catalysts for lower olefins: mechanism and strategy. Chemical Science, 2019, 10, 6083-6090.	3.7	41
64	Sulfur and Nitrogen Codoped Carbon Tubes as Bifunctional Metal-Free Electrocatalysts for Oxygen Reduction and Hydrogen Evolution in Acidic Media. Chemistry - A European Journal, 2016, 22, 10261-10261.	1.7	40
65	Enhanced Cold Field Emission of Large-area Arrays of Vertically Aligned ZnO-nanotapers via Sharpening: Experiment and Theory. Scientific Reports, 2014, 4, 4676.	1.6	38
66	Investigation of Ni–P–B ultrafine amorphous alloy particles produced by chemical reduction. Journal of Applied Physics, 1992, 71, 5217-5221.	1.1	37
67	Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst. Journal of Materials Chemistry, 2012, 22, 11927.	6.7	37
68	Carbon monoxide hydrogenation on Fe2O3/ZrO2 catalysts. Catalysis Letters, 1996, 36, 139-144.	1.4	35
69	A study of Feâ€Niâ€B ultrafine alloy particles produced by reduction with borohydride. Journal of Applied Physics, 1991, 70, 436-438.	1.1	34
70	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 21313-21319.	5.2	34
71	Artificial Construction of the Magnetically Separable Nanocatalyst by Anchoring Pt Nanoparticles on Functionalized Carbon-Encapsulated Nickel Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 472-475.	1.5	33
72	Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Science Bulletin, 2011, 56, 3583-3589.	1.7	33

#	Article	IF	CITATIONS
73	Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites. Nanoscale, 2016, 8, 8480-8485.	2.8	33
74	A general strategy to construct yolk-shelled metal oxides inside carbon nanocages for high-stable lithium-ion battery anodes. Nano Energy, 2020, 68, 104368.	8.2	32
75	Identifying Iron–Nitrogen/Carbon Active Structures for Oxygen Reduction Reaction under the Effect of Electrode Potential. Journal of Physical Chemistry Letters, 2020, 11, 2896-2901.	2.1	32
76	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	10.1	31
77	Alcohol-Tolerant Platinum Electrocatalyst for Oxygen Reduction by Encapsulating Platinum Nanoparticles inside Nitrogen-Doped Carbon Nanocages. ACS Applied Materials & Interfaces, 2016, 8, 16664-16669.	4.0	28
78	Boosting faradaic efficiency of CO2 electroreduction to CO for Feâ^'Nâ^'C single-site catalysts by stabilizing Fe3+ sites via F-doping. Nano Research, 2022, 15, 7896-7902.	5.8	27
79	Convenient immobilization of Pt–Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation. Nanotechnology, 2011, 22, 395401.	1.3	26
80	Superionic conductor-mediated growth of ternary ZnCdS nanorods over a wide composition range. Nano Research, 2015, 8, 584-591.	5.8	26
81	The preparation of Niâ€P ultrafine amorphous alloy particles by chemical reduction. Applied Physics Letters, 1991, 59, 3545-3546.	1.5	25
82	Tuning the field emission properties of AlN nanocones by doping. Journal of Materials Chemistry C, 2015, 3, 1113-1117.	2.7	24
83	Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon, 2016, 103, 480-487.	5.4	23
84	Design of Thiazolo[5,4- <i>d</i>]thiazole-Bridged Ionic Covalent Organic Polymer for Highly Selective Oxygen Reduction to H ₂ O ₂ . Chemistry of Materials, 2020, 32, 8553-8560.	3.2	23
85	Thermally Conductive AlNâ€Network Shield for Separators to Achieve Dendriteâ€Free Plating and Fast Liâ€Ion Transport toward Durable and Highâ€Rate Lithiumâ€Metal Anodes. Advanced Science, 2022, 9, e2200411.	5.6	23
86	High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nanocages for methanol electrooxidation. Chinese Journal of Catalysis, 2016, 37, 1149-1155.	6.9	22
87	Catalytic Activity and Impedance Behavior of Screenâ€Printed Nickel Oxide as Efficient Water Oxidation Catalysts. ChemSusChem, 2015, 8, 4266-4274.	3.6	20
88	Promoting the Electrochemical Performances by Chemical Depositing of Gold Nanoparticles Inside Pores of 3D Nitrogen-Doped Carbon Nanocages. ACS Applied Materials & Interfaces, 2017, 9, 31968-31976.	4.0	20
89	Structural and Compositional Regulation of Nitrogen-Doped Carbon Nanotubes with Nitrogen-Containing Aromatic Precursors. Journal of Physical Chemistry C, 2013, 117, 7811-7817.	1.5	18
90	Boosting oxygen reduction activity of spinel CoFe 2 O 4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Science Bulletin, 2017, 62, 1365-1372.	4.3	18

#	Article	IF	CITATIONS
91	Deposition-Pressure-Induced Optimization of Molecular Packing for High-Performance Organic Thin-Film Transistors Based on Copper Phthalocyanine. Journal of Physical Chemistry C, 2012, 116, 4287-4292.	1.5	17
92	Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China Chemistry, 2015, 58, 180-186.	4.2	17
93	Formation of ultrafine amorphous alloy particles with uniform size by autocatalytic method. Journal of Materials Science Letters, 1993, 12, 1020-1021.	0.5	15
94	Six-Membered-Ring-Based Radical Mechanism for Catalytic Growth of Carbon Nanotubes with Benzene Precursor. Journal of Physical Chemistry C, 2009, 113, 16495-16502.	1.5	15
95	Chloride Ion as Redox Mediator in Reducing Charge Overpotential of Aprotic Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2021, 4, 232-239.	2.4	15
96	Rutheniumâ€Functionalized Hierarchical Carbon Nanocages as Efficient Catalysts for Liâ€O ₂ Batteries. ChemNanoMat, 2017, 3, 415-419.	1.5	14
97	Spinel Nickel Cobaltite Mesostructures Assembled from Ultrathin Nanosheets for High-Performance Electrochemical Energy Storage. ACS Applied Energy Materials, 2018, 1, 684-691.	2.5	14
98	Synthesis of alloyed Zn _{1–x} Mn _x S nanowires with completely controlled compositions and tunable bandgaps. RSC Advances, 2018, 8, 374-379.	1.7	14
99	Improving field emission by constructing CsI–AlN hybrid nanostructures. Journal of Materials Chemistry, 2012, 22, 18578.	6.7	13
100	Doping sp ² carbon to boost the activity for oxygen reduction in an acidic medium: a theoretical exploration. RSC Advances, 2016, 6, 48498-48503.	1.7	13
101	Anion-induced morphological regulation of In(OH)3 nanostructures and their conversion into porous In2O3 derivatives. CrystEngComm, 2012, 14, 3397.	1.3	11
102	Vertically Grown Few‣ayer MoS ₂ Nanosheets on Hierarchical Carbon Nanocages for Pseudocapacitive Lithium Storage with Ultrahighâ€Rate Capability and Longâ€Term Recyclability. Chemistry - A European Journal, 2019, 25, 3843-3848.	1.7	11
103	Solution–solid–solid growth of metastable wurtzite γ-MnS nanowires with controlled length. Journal of Materials Chemistry C, 2017, 5, 6493-6496.	2.7	11
104	Carbon Nanocages: Nitrogenâ€Doped Carbon Nanocages as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction (Adv. Mater. 41/2012). Advanced Materials, 2012, 24, 5646-5646.	11.1	10
105	The Influence of Pd Particles Distribution Position on Pd/CNTs Catalyst for Acetylene Selective Hydrogenation. Catalysis Letters, 2014, 144, 2198-2203.	1.4	10
106	Enlarging ion-transfer micropore channels of hierarchical carbon nanocages for ultrahigh energy and power densities. Science China Materials, 2021, 64, 2173-2181.	3.5	10
107	Free-Standing Monolithic Sulfur Cathode of Reduced Graphene Oxide Wrapped Sulfur-Filled Carbon Nanocages with High Areal Capacity. Acta Chimica Sinica, 2018, 76, 627.	0.5	10
108	The Compositeâ€Template Method to Construct Hierarchical Carbon Nanocages for Supercapacitors with Ultrahigh Energy and Power Densities. Small, 2022, 18, e2107082.	5.2	10

#	Article	IF	CITATIONS
109	Modified redox synthesis and electrochemical properties of potassium manganese oxide nanowires. Journal of Materials Chemistry, 2011, 21, 17904.	6.7	8
110	Morphology-controlled growth of chromium silicide nanostructures and their field emission properties. CrystEngComm, 2012, 14, 1659-1664.	1.3	8
111	Effective enhancement of electrochemical energy storage of cobalt-based nanocrystals by hybridization with nitrogen-doped carbon nanocages. Science China Materials, 2019, 62, 1393-1402.	3.5	8
112	Confinement and Electrocatalysis of Cerium Fluoride Nanocages to Boost the Lithium–Sulfur Batteries Performance. Small Structures, 2022, 3, .	6.9	8
113	Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Research, 2022, 15, 4132-4136.	5.8	7
114	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 36, 473-478.	1.6	6
115	Supercapacitor Nanostructures: Carbon Nanocages as Supercapacitor Electrode Materials (Adv.) Tj ETQq1 1 0.78	4314 rgB ⁻	[/Qverlock
116	Low-voltage organic field-effect transistors based on novel high- <i>κ</i> organometallic lanthanide complex for gate insulating materials. AIP Advances, 2014, 4, .	0.6	6
117	Carbon Nanocages Supported LiFePO ₄ Nanoparticles as High-Performance Cathode for Lithium Ion Batteries. Acta Chimica Sinica, 2014, 72, 653.	0.5	6
118	Field emission of comb-like chromium disilicide nanowires prepared by an in situ chloride-generated route. Applied Physics A: Materials Science and Processing, 2011, 103, 67-72.	1.1	5
119	Nonmacrocyclic Iron(II) Soluble Redox Mediators Leading to High-Rate Li–O ₂ Battery. CCS Chemistry, 2021, 3, 1350-1358.	4.6	5
120	Synthesis and Electrocatalytic Oxygen Reduction Performance of the Sulfur-Doped Carbon Nanocages. Acta Chimica Sinica, 2014, 72, 1070.	0.5	5
121	Synthesis of carbon nanowires using dc pulsed corona discharge plasma reaction. Journal of Materials Science, 2004, 39, 283-284.	1.7	4
122	Electrochemiluminescence of CdSe Quantum Dots Composited with Nitrogenâ€Đoped Carbon Nanotubes. Electroanalysis, 2009, 21, 2495-2498.	1.5	4
123	Scanning transmission X-ray microscopy and X-ray absorption near-edge structure studies of N-doped carbon nanotubes sealed with N2 gas. Journal of Applied Physics, 2012, 111, 124318.	1.1	4
124	Pentacene thin film transistor with low threshold voltage and high mobility by inserting a thin metal phthalocyanines interlayer. Science China Technological Sciences, 2012, 55, 417-420.	2.0	4
125	Phase-equilibrium-dominated vapor-liquid-solid mechanism: further evidence. Science China Materials, 2016, 59, 20-27.	3.5	3
126	Morphology and composition evolution of one-dimensional InxAl1â^'xN nanostructures induced by the vapour pressure ratio. CrystEngComm, 2016, 18, 213-217.	1.3	3

#	Article	IF	CITATIONS
127	Hierarchical Carbon Nanocages as Efficient Catalysts for Oxidative Coupling of Benzylamine to <i>N</i> -Benzylidene Benzylamine. Acta Chimica Sinica, 2021, 79, 539.	O.5	3
128	Enhancing the Reduction Kinetics of Lïi£¿SF ₆ Batteries by Dispersed Cobalt Phthalocyanines on Porous Carbon. Small, 2021, 17, e2103778.	5.2	3
129	Field-emission of TiSi2 thin film deposited by an in situ chloride-generated route. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1093-1096.	0.6	2
130	Fullerene-Related Nanocarbons and Their Applications. Journal of Nanotechnology, 2012, 2012, 1-2.	1.5	2
131	Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration. AIP Advances, 2014, 4, 067126.	0.6	2
132	Carbon Nanocages//Tungsten Trioxide Nanorods Supercapacitors with <i>in situ</i> Polymerized Gel Electrolytes. Acta Chimica Sinica, 2021, 79, 755.	0.5	2
133	Surface state and catalytic activity of ultrafine amorphous NiB alloy particles prepared by chemical reduction. Journal of Materials Science Letters, 1993, 12, 596-597.	0.5	2
134	Chemical preparation and investigation of Fe-P-B ultrafine amorphous alloy particles. Science in China Series B: Chemistry, 1997, 40, 261-269.	0.8	1
135	Growth mechanism, structural regulation and functionalization of carbon-based nanotubes. , 2010, , .		1
136	Constructing monolithic sulfur cathodes with multifunctional N,P dual-doped carbon nanocages to achieve high-areal-capacity lithium-sulfur batteries. FlatChem, 2021, 28, 100253.	2.8	1
137	Preparation And Magnetic Properties Of Fe-P-B Ultrafine Amorphous Alloy Particles. , 1993, , .		0

138 Patterned growth and field emission properties of AlN nanocones. , 2010, , .

0