Huaping Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4716213/publications.pdf

Version: 2024-02-01

136740 98622 5,964 67 32 67 citations h-index g-index papers 67 67 67 8175 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials, 2013, 6, 1285-1309.	1.3	1,018
2	Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 2009, 30, 2499-2506.	5.7	869
3	Injectable, Biodegradable Hydrogels for Tissue Engineering Applications. Materials, 2010, 3, 1746-1767.	1.3	536
4	Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 2009, 30, 6844-6853.	5.7	332
5	Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Materials Science and Engineering C, 2017, 70, 287-295.	3.8	294
6	Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Materials Science and Engineering C, 2016, 63, 274-284.	3.8	171
7	Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomaterialia, 2009, 5, 328-337.	4.1	166
8	Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Materials Science and Engineering C, 2019, 101, 619-629.	3.8	149
9	Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. International Journal of Biological Macromolecules, 2018, 118, 1257-1266.	3.6	147
10	Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Materials Science and Engineering C, 2017, 71, 67-74.	3.8	143
11	Direct Synthesis of Biodegradable Polysaccharide Derivative Hydrogels Through Aqueous Dielsâ€Alder Chemistry. Macromolecular Rapid Communications, 2011, 32, 905-911.	2.0	132
12	Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Materials Science and Engineering C, 2017, 81, 522-531.	3.8	115
13	Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 2008, 66, 218-225.	2.5	114
14	Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis, 2010, 6, 173-180.	0.4	106
15	Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 790-797.	1.3	98
16	Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering. Acta Biomaterialia, 2015, 20, 60-68.	4.1	94
17	Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. International Journal of Biological Macromolecules, 2019, 127, 340-348.	3.6	93
18	Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering. Materials Science and Engineering C, 2015, 56, 311-317.	3.8	77

#	Article	IF	CITATIONS
19	RGD modified PLGA/gelatin microspheres as microcarriers for chondrocyte delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 228-238.	1.6	69
20	Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. International Journal of Biological Macromolecules, 2020, 164, 2204-2214.	3.6	68
21	A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity. Carbohydrate Polymers, 2021, 251, 117040.	5.1	68
22	Biological self-assembly of injectable hydrogel as cell scaffold via specific nucleobase pairing. Chemical Communications, 2012, 48, 10289.	2.2	65
23	Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2007, 18, 1961-1968.	1.7	63
24	Novel multiarm PEGâ€based hydrogels for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 979-987.	2.1	47
25	Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries. Energy Storage Materials, 2020, 25, 305-312.	9.5	45
26	Injectable Nanohybrid Scaffold for Biopharmaceuticals Delivery and Soft Tissue Engineering. Macromolecular Rapid Communications, 2012, 33, 2015-2022.	2.0	44
27	The Design of Biodegradable Microcarriers for Induced Cell Aggregation. Macromolecular Bioscience, 2010, 10, 156-163.	2.1	43
28	Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 352-359.	1.5	40
29	Covalently crosslinked hyaluronic acidâ€chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering. Journal of Applied Polymer Science, 2013, 129, 682-688.	1.3	40
30	Microscale control over collagen gradient on poly(I-lactide) membrane surface for manipulating chondrocyte distribution. Colloids and Surfaces B: Biointerfaces, 2008, 67, 210-215.	2.5	39
31	An Injectable Hyaluronic Acid-Based Composite Hydrogel by DA Click Chemistry With pH Sensitive Nanoparticle for Biomedical Application. Frontiers in Chemistry, 2019, 7, 477.	1.8	39
32	Covalent Chitosanâ€Cellulose Hydrogels via Schiffâ€Base Reaction Containing Macromolecular Microgels for pHâ€Sensitive Drug Delivery and Wound Dressing. Macromolecular Chemistry and Physics, 2019, 220, 1900399.	1.1	35
33	Magnetic biopolymer nanogels via biological assembly for vectoring delivery of biopharmaceuticals. Journal of Materials Chemistry B, 2014, 2, 8399-8405.	2.9	33
34	Biomimetic modification of chitosan with covalently grafted lactose and blended heparin for improvement of <i>in vitro</i> cellular interaction. Polymers for Advanced Technologies, 2008, 19, 15-23.	1.6	31
35	Injectable Graphene Oxide/Graphene Composite Supramolecular Hydrogel for Delivery of Anti-Cancer Drugs. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 378-384.	1.2	31
36	Alginate membrane dressing toughened by chitosan floccule to load antibacterial drugs for wound healing. Polymer Testing, 2019, 79, 106039.	2.3	31

#	Article	IF	Citations
37	Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 43-52.	1.5	29
38	Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 297-304.	2.3	29
39	Double stimulus-induced stem cell aggregation during differentiation on a biopolymer hydrogel substrate. Chemical Communications, 2013, 49, 11554.	2.2	28
40	Dual-crosslinked alginate/carboxymethyl chitosan hydrogel containing in situ synthesized calcium phosphate particles for drug delivery application. Materials Chemistry and Physics, 2020, 241, 122354.	2.0	28
41	Injectable Gel Scaffold Based on Biopolymer Microspheres via an Enzymatic Reaction. Advanced Healthcare Materials, 2014, 3, 1769-1775.	3.9	24
42	Heparin Interacting Protein Mediated Assembly of Nanoâ€Fibrous Hydrogel Scaffolds for Guided Stem Cell Differentiation. Macromolecular Bioscience, 2012, 12, 621-627.	2.1	22
43	Magnetic hyaluronic acid nanospheres via aqueous Diels–Alder chemistry to deliver dexamethasone for adipose tissue engineering. Journal of Colloid and Interface Science, 2015, 458, 293-299.	5.0	22
44	Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Science Bulletin, 2009, 54, 3174-3180.	1.7	21
45	Covalently injectable chitosan/chondroitin sulfate hydrogel integrated gelatin/heparin microspheres for soft tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 149-157.	1.8	20
46	Covalently crosslinked chitosan-poly(ethylene glycol) hybrid hydrogels to deliver insulin for adipose-derived stem cells encapsulation. Macromolecular Research, 2013, 21, 392-399.	1.0	19
47	Breathable Nanowood Biofilms as Guiding Layer for Green Onâ€Skin Electronics. Small, 2019, 15, 1901079.	5.2	19
48	Polysaccharide-based supramolecular drug delivery systems mediated via host-guest interactions of cucurbiturils. Chinese Chemical Letters, 2021, 32, 949-953.	4.8	19
49	Thermal-reversible and self-healing hydrogel containing magnetic microspheres derived from natural polysaccharides for drug delivery. European Polymer Journal, 2021, 157, 110644.	2.6	18
50	Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1344-1359.	1.9	17
51	Injectable <i>in situ</i> forming glucoseâ€responsive dextranâ€based hydrogels to deliver adipogenic factor for adipose tissue engineering. Journal of Applied Polymer Science, 2012, 126, E180.	1.3	16
52	Multi-stimuli-responsive, liposome-crosslinked poly(ethylene glycol) hydrogels for drug delivery. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 635-656.	1.9	16
53	Synthesis and Characterization of Cyclodextrin-containing Hydrogel for Ophthalmic Drugs Delivery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 983-990.	1.2	15
54	Injectable Multi-Arm Poly(ethylene glycol)/Hyaluronic Acid Hydrogels for Adipose Tissue Engineering. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 345-352.	1.2	13

#	Article	IF	CITATIONS
55	Carbon nanotubes as electrophysiological building blocks for a bioactive cell scaffold through biological assembly to induce osteogenesis. RSC Advances, 2019, 9, 12001-12009.	1.7	13
56	Adipogenic Factor-Loaded Microspheres Increase Retention of Transplanted Adipose Tissue. Tissue Engineering - Part A, 2014, 20, 2283-2290.	1.6	12
57	Nanostructured Gel Scaffolds for Osteogenesis through Biological Assembly of Biopolymers via Specific Nucleobase Pairing. Macromolecular Bioscience, 2014, 14, 1521-1527.	2.1	12
58	Fabrication, Investigation, and Application of Light-Responsive Self-Assembled Nanoparticles. Frontiers in Chemistry, 2019, 7, 620.	1.8	11
59	Preparation of waterâ€soluble and biocompatible graphene. Micro and Nano Letters, 2013, 8, 277-279.	0.6	10
60	Design, Synthesis, Investigation, and Application of a Macromolecule Photoswitch. Frontiers in Chemistry, 2019, 7, 86.	1.8	9
61	Covalent and environment-responsive biopolymer hydrogel for drug delivery and wound healing. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 736-747.	1.2	9
62	Preparation of Biocompatible Graphene Oxide Composite Hydrogel to Deliver Ophthalmic Drugs. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 1201-1208.	1.2	8
63	Supramolecular Modulation of Antibacterial Activity of Ambroxol by Cucurbit[7]uril. ChemPlusChem, 2020, 85, 679-683.	1.3	7
64	A pH-Responsive Multifunctional Nanocarrier in the Application of Chemo-Photodynamic Therapy. Journal of Nanomaterials, 2019, 2019, 1-12.	1.5	5
65	Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis. Journal of Nanoscience and Nanotechnology, 2016, 16, 5562-5568.	0.9	4
66	Biocompatible conjugation for biodegradable hydrogels as drug and cell scaffolds. Cogent Engineering, 2020, 7, 1736407.	1.1	3
67	Towards the "sustainable―operation at -30°C without the expense of energy for heating on-face electronics: Intelligent heat conservation and waste heat utilization. Energy Reports, 2022, 8,	2.5	1