
Yosuke Tamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4715436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nature Genetics, 2006, 38, 706-710.	9.4	309
2	<i>ARABIDOPSIS TRITHORAX-RELATED7</i> Is Required for Methylation of Lysine 4 of Histone H3 and for Transcriptional Activation of <i>FLOWERING LOCUS C</i> Â Â. Plant Cell, 2009, 21, 3257-3269.	3.1	182
3	<i>WOX13</i> - <i>like</i> genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss <i>Physcomitrella patens</i> . Development (Cambridge), 2014, 141, 1660-1670.	1.2	136
4	KNOX2 Genes Regulate the Haploid-to-Diploid Morphological Transition in Land Plants. Science, 2013, 339, 1067-1070.	6.0	132
5	Histone H2B Deubiquitination Is Required for Transcriptional Activation of <i>FLOWERING LOCUS C</i> and for Proper Control of Flowering in Arabidopsis Â. Plant Physiology, 2009, 149, 1196-1204.	2.3	100
6	Growth habit determination by the balance of histone methylation activities in Arabidopsis. EMBO Journal, 2010, 29, 3208-3215.	3.5	95
7	Calcium dynamics during trap closure visualized in transgenic Venus flytrap. Nature Plants, 2020, 6, 1219-1224.	4.7	67
8	Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. Current Biology, 2020, 30, 2312-2320.e5.	1.8	60
9	ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is Required for the Winter-Annual Habit of Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 834-846.	1.5	58
10	Common-path multimodal three-dimensional fluorescence and phase imaging system. Journal of Biomedical Optics, 2020, 25, 1.	1.4	52
11	Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Nature Plants, 2018, 4, 36-45.	4.7	51
12	A Flowering Integrator, SOC1, Affects Stomatal Opening in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 640-649.	1.5	45
13	Single-cell transcriptome analysis of Physcomitrella leaf cells during reprogramming using microcapillary manipulation. Nucleic Acids Research, 2019, 47, 4539-4553.	6.5	39
14	Polycomb proteins regulate the quantitative induction of <i>VERNALIZATION INSENSITIVE 3</i> in response to low temperatures. Plant Journal, 2011, 65, 382-391.	2.8	38
15	A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens. Nature Communications, 2017, 8, 14242.	5.8	37
16	Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming. Nature Plants, 2019, 5, 681-690.	4.7	32
17	Single-shot common-path off-axis digital holography: applications in bioimaging and optical metrology [Invited]. Applied Optics, 2021, 60, A195.	0.9	30
18	Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy. International Journal of Optomechatronics, 2014, 8, 89-99.	3.3	24

Yosuke Tamada

#	Article	IF	CITATIONS
19	Single-shot common-path off-axis dual-wavelength digital holographic microscopy. Applied Optics, 2020, 59, 7144.	0.9	23
20	FLC: A Hidden Polycomb Response Element Shows Up in Silence. Plant and Cell Physiology, 2012, 53, 785-793.	1.5	22
21	DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nature Plants, 2020, 6, 1098-1105.	4.7	22
22	Digital Holographic Multimodal Cross-Sectional Fluorescence and Quantitative Phase Imaging System. Scientific Reports, 2020, 10, 7580.	1.6	22
23	Abundant Expression in Vascular Tissue of Plant TAF10, an Orthologous Gene for TATA Box-binding Protein-associated Factor 10, in Flaveria trinervia and Abnormal Morphology of Arabidopsis thaliana Transformants on its Overexpression. Plant and Cell Physiology, 2005, 46, 108-117.	1.5	21
24	Temporary Expression of the TAF10 Gene and its Requirement for Normal Development of Arabidopsis thaliana. Plant and Cell Physiology, 2007, 48, 134-146.	1.5	19
25	Functional and expressional analyses of apple <i>FLC-</i> like in relation to dormancy progress and flower bud development. Tree Physiology, 2021, 41, 562-570.	1.4	19
26	The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 860-870.	0.9	17
27	Low-cost multi-modal microscope using Raspberry Pi. Optik, 2020, 212, 164713.	1.4	15
28	<scp>H3K4me3</scp> plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. Plant Journal, 2022, 111, 1015-1031.	2.8	13
29	Multimodal Microscopy: Fast Acquisition of Quantitative Phase and Fluorescence Imaging in 3D Space. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-11.	1.9	12
30	Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation. Nucleic Acids Research, 2021, 49, 7347-7360.	6.5	12
31	Global transcriptome analysis reveals dynamic gene expression profiling and provides insights into biosynthesis of resveratrol and anthraquinones in a medicinal plant Polygonum cuspidatum. Industrial Crops and Products, 2021, 171, 113919.	2.5	9
32	Effect of photooxidative destruction of chloroplasts on the expression of nuclear genes for C4 photosynthesis and for chloroplast biogenesis in maize. Journal of Plant Physiology, 2003, 160, 3-8.	1.6	5
33	Contrast enhancement by oblique illumination microscopy with an LED array. Optik, 2019, 183, 92-98.	1.4	5
34	Multi-Physical Parameter Cross-Sectional Imaging of Quantitative Phase and Fluorescence by Integrated Multimodal Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-9.	1.9	5
35	Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing. Journal of Biomedical Optics, 2020, 25, .	1.4	5
36	Mobile-phone-based Rheinberg microscope with a light-emitting diode array. Journal of Biomedical Optics, 2018, 24, 1.	1.4	4

Yosuke Tamada

#	Article	IF	CITATIONS
37	Artificial testing targets with controllable blur for adaptive optics microscopes. Optical Engineering, 2017, 56, 1.	0.5	4
38	Adaptive optics microscopy for fine imaging of live plant cells. SPIE Newsroom, 0, , .	0.1	4
39	Complex amplitude mapping based on adaptive autofocusing algorithm. Optical Review, 2019, 26, 342-348.	1.2	3
40	Genomes of the Venus Flytrap and Close Relatives Unveil the Roots of Plant Carnivory. SSRN Electronic Journal, 0, , .	0.4	3
41	Vibration characteristics of the welding tip and welding sample in ultrasonic welding using planar vibration. Acoustical Science and Technology, 2020, 41, 645-653.	0.3	2
42	Topoisomerase 1α is required for synchronous spermatogenesis in <i>Physcomitrium patens</i> . New Phytologist, 2022, 234, 137-148.	3.5	2
43	The development of an adaptive optics system and its application to biological microscope. , 2016, , .		1
44	Decoupling the refractive index and thickness by dual-wavelength digital holographic microscopy. , 2021, , .		1
45	Numerical evaluation of transport-of-intensity phase imaging with oblique illumination for refractive index tomography. , 2019, , .		1
46	Development of microscopic adaptive optics using image correlation. , 2019, , .		1
47	Multi-modal digital holography for live cell imaging. , 2016, , .		0
48	Adaptive optical imaging through complex living plant cells. , 2017, , .		0
49	Basic experiments of laser beam correction by adaptive optics microscope for the accurate manipulation of biological tissues. , 2017, , .		0
50	Experiments of scene-based adaptive optics with differential sensing technique. , 2021, , .		0
51	Lateral spatial resolution improvement in laser scanning fluorescence microscopy using a subdiffraction limit optical spot. , 2018, , .		0
52	Observation of Plant Cell by Holographic 3D Illumination and Imaging Functional Optical Microscopy. , 2019, , .		0
53	Differential sensing technique for correlation-based adaptive optics. , 2020, , .		0
54	Live-cell imaging to illuminate the mechanism underlying high stem-cell formation ability in plants. , 2020, , .		0

#	Article	IF	CITATIONS
55	Improvement of signal-to-noise ratio in super resolution imaging using subdiffraction limited spots by additional digital signal processing. , 2020, , .		0
56	Fluorescence imaging to understand the molecular mechanism of DNA damage-triggered cellular reprogramming in plants. , 2021, , .		0
57	Stable Multimodal Three-Dimensional Imaging. , 2020, , .		0
58	Non-interferometric 3D fluorescence imaging for bio-applications. , 2020, , .		0