
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4715422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 2020, 30, 678-692.	5.7	662
2	Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature, 2010, 463, 689-692.	13.7	590
3	Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M ^{pro} and cathepsin L. Science Advances, 2020, 6, .	4.7	297
4	Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nature Communications, 2021, 12, 6055.	5.8	215
5	Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1315-1320.	3.3	204
6	Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacology and Translational Science, 2020, 3, 1265-1277.	2.5	194
7	Molecular Dynamics Simulation Directed Rational Design of Inhibitors Targeting Drug-Resistant Mutants of Influenza A Virus M2. Journal of the American Chemical Society, 2011, 133, 12834-12841.	6.6	127
8	The <i>in vitro</i> antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerging Microbes and Infections, 2021, 10, 317-330.	3.0	126
9	Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Molecular BioSystems, 2006, 2, 58-68.	2.9	124
10	Structural and dynamic mechanisms for the function and inhibition of the M2 proton channel from influenza A virus. Current Opinion in Structural Biology, 2011, 21, 68-80.	2.6	117
11	Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. ACS Central Science, 2021, 7, 1245-1260.	5.3	115
12	Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2848-2865.	2.9	102
13	Influenza Virus A M2 Protein Generates Negative Gaussian Membrane Curvature Necessary for Budding and Scission. Journal of the American Chemical Society, 2013, 135, 13710-13719.	6.6	101
14	Specific Binding of Adamantane Drugs and Direction of Their Polar Amines in the Pore of the Influenza M2 Transmembrane Domain in Lipid Bilayers and Dodecylphosphocholine Micelles Determined by NMR Spectroscopy. Journal of the American Chemical Society, 2011, 133, 4274-4284.	6.6	100
15	Design and Pharmacological Characterization of Inhibitors of Amantadine-Resistant Mutants of the M2 Ion Channel of Influenza A Virus. Biochemistry, 2009, 48, 11872-11882.	1.2	98
16	High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein and Cell, 2021, 12, 877-888.	4.8	95
17	Discovery of Novel Dual Inhibitors of the Wild-Type and the Most Prevalent Drug-Resistant Mutant, S31N, of the M2 Proton Channel from Influenza A Virus. Journal of Medicinal Chemistry, 2013, 56, 2804-2812.	2.9	88
18	Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus. Journal of the American Chemical Society, 2009, 131, 8066-8076.	6.6	87

#	Article	IF	CITATIONS
19	Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. Journal of the American Chemical Society, 2018, 140, 15219-15226.	6.6	87
20	Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Journal of the American Chemical Society, 2021, 143, 20697-20709.	6.6	87
21	The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition. Cell Research, 2022, 32, 498-500.	5.7	85
22	Proton and cation transport activity of the M2 proton channel from influenza A virus. Proceedings of the United States of America, 2010, 107, 15409-15414.	3.3	81
23	Flipping in the Pore: Discovery of Dual Inhibitors That Bind in Different Orientations to the Wild-Type versus the Amantadine-Resistant S31N Mutant of the Influenza A Virus M2 Proton Channel. Journal of the American Chemical Society, 2014, 136, 17987-17995.	6.6	78
24	Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. ACS Infectious Diseases, 2021, 7, 586-597.	1.8	76
25	Exploring the Size Limit of Templates for Inhibitors of the M2 Ion Channel of Influenza A Virus. Journal of Medicinal Chemistry, 2011, 54, 2646-2657.	2.9	69
26	Progress and Challenges in Targeting the SARS-CoV-2 Papain-like Protease. Journal of Medicinal Chemistry, 2022, 65, 7561-7580.	2.9	65
27	Exploring Organosilane Amines as Potent Inhibitors and Structural Probes of Influenza A Virus M2 Proton Channel. Journal of the American Chemical Society, 2011, 133, 13844-13847.	6.6	64
28	Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. Journal of the American Chemical Society, 2013, 135, 9885-9897.	6.6	63
29	Rational Design of Hybrid SARS-CoV-2 Main Protease Inhibitors Guided by the Superimposed Cocrystal Structures with the Peptidomimetic Inhibitors GC-376, Telaprevir, and Boceprevir. ACS Pharmacology and Translational Science, 2021, 4, 1408-1421.	2.5	62
30	Inhibitor Fingerprinting of Matrix Metalloproteases Using a Combinatorial Peptide Hydroxamate Library. Journal of the American Chemical Society, 2007, 129, 7848-7858.	6.6	60
31	Expeditious Lead Optimization of Isoxazole-Containing Influenza A Virus M2-S31N Inhibitors Using the Suzuki–Miyaura Cross-Coupling Reaction. Journal of Medicinal Chemistry, 2017, 60, 1580-1590.	2.9	59
32	Recent progress in designing inhibitors that target the drugâ€resistant M2 proton channels from the influenza A viruses. Biopolymers, 2015, 104, 291-309.	1.2	57
33	Put a cork in it: Plugging the M2 viral ion channel to sink influenza. Antiviral Research, 2020, 178, 104780.	1.9	56
34	Validation and invalidation of SARS-CoV-2 main protease inhibitors using the Flip-GFP and Protease-Glo luciferase assays. Acta Pharmaceutica Sinica B, 2022, 12, 1636-1651.	5.7	55
35	Recent developments in microarray-based enzyme assays: from functional annotation to substrate/inhibitor fingerprinting. Analytical and Bioanalytical Chemistry, 2006, 386, 416-426.	1.9	52
36	Exploring the Requirements for the Hydrophobic Scaffold and Polar Amine in Inhibitors of M2 from Influenza A Virus. ACS Medicinal Chemistry Letters, 2011, 2, 307-312.	1.3	51

#	Article	IF	CITATIONS
37	Rapid Assembly of Matrix Metalloprotease Inhibitors Using Click Chemistry. Organic Letters, 2006, 8, 3821-3824.	2.4	50
38	Quantitative Inhibitor Fingerprinting of Metalloproteases Using Small Molecule Microarrays. Journal of the American Chemical Society, 2007, 129, 13110-13117.	6.6	49
39	Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel. Journal of the American Chemical Society, 2016, 138, 8143-8155.	6.6	49
40	Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Current Topics in Medicinal Chemistry, 2017, 17, 2271-2285.	1.0	49
41	Inhibitors of the Influenza A Virus M2 Proton Channel Discovered Using a High-Throughput Yeast Growth Restoration Assay. PLoS ONE, 2013, 8, e55271.	1.1	48
42	Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
43	3-Azatetracyclo[5.2.1.1 ^{5,8} .0 ^{1,5}]undecane Derivatives: From Wild-Type Inhibitors of the M2 Ion Channel of Influenza A Virus to Derivatives with Potent Activity against the V27A Mutant. Journal of Medicinal Chemistry, 2013, 56, 9265-9274.	2.9	46
44	Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Scientific Reports, 2021, 11, 9609.	1.6	46
45	Discovery of Highly Potent Inhibitors Targeting the Predominant Drug-Resistant S31N Mutant of the Influenza A Virus M2 Proton Channel. Journal of Medicinal Chemistry, 2016, 59, 1207-1216.	2.9	45
46	An M2-V27A channel blocker demonstrates potent inÂvitro and inÂvivo antiviral activities against amantadine-sensitive and -resistant influenza A viruses. Antiviral Research, 2017, 140, 45-54.	1.9	44
47	Validating Enterovirus D68-2A ^{pro} as an Antiviral Drug Target and the Discovery of Telaprevir as a Potent D68-2A ^{pro} Inhibitor. Journal of Virology, 2019, 93, .	1.5	44
48	Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high inÂvitro genetic barrier of drug resistance. Antiviral Research, 2016, 133, 62-72.	1.9	42
49	Discovery of Quinoline Analogues as Potent Antivirals against Enterovirus D68 (EV-D68). Journal of Medicinal Chemistry, 2019, 62, 4074-4090.	2.9	42
50	In Vitro Pharmacokinetic Optimizations of AM2-S31N Channel Blockers Led to the Discovery of Slow-Binding Inhibitors with Potent Antiviral Activity against Drug-Resistant Influenza A Viruses. Journal of Medicinal Chemistry, 2018, 61, 1074-1085.	2.9	41
51	De Novo Design of Self-Assembling Foldamers That Inhibit Heparin–Protein Interactions. ACS Chemical Biology, 2014, 9, 967-975.	1.6	39
52	Inhibitors Targeting the Influenza Virus Hemagglutinin. Current Medicinal Chemistry, 2015, 22, 1361-1382.	1.2	38
53	"Click―synthesis of small molecule probes for activity-based fingerprinting of matrix metalloproteases. Chemical Communications, 2006, , 3783-3785.	2.2	37
54	Pharmacological Characterization of the Spectrum of Antiviral Activity and Genetic Barrier to Drug Resistance of M2-S31N Channel Blockers. Molecular Pharmacology, 2016, 90, 188-198.	1.0	37

#	Article	IF	CITATIONS
55	Enterovirus A71 antivirals: Past, present, and future. Acta Pharmaceutica Sinica B, 2022, 12, 1542-1566.	5.7	36
56	Asp44 Stabilizes the Trp41 Gate of the M2 Proton Channel of Influenza A Virus. Structure, 2013, 21, 2033-2041.	1.6	34
57	Discovery of Potent Antivirals against Amantadine-Resistant Influenza A Viruses by Targeting the M2-S31N Proton Channel. ACS Infectious Diseases, 2016, 2, 726-733.	1.8	32
58	Enterovirus D68 Antivirals: Past, Present, and Future. ACS Infectious Diseases, 2020, 6, 1572-1586.	1.8	32
59	Validation and Invalidation of SARS-CoV-2 Papain-like Protease Inhibitors. ACS Pharmacology and Translational Science, 2022, 5, 102-109.	2.5	30
60	Design and expeditious synthesis of organosilanes as potent antivirals targeting multidrug-resistant influenza A viruses. European Journal of Medicinal Chemistry, 2017, 135, 70-76.	2.6	27
61	Discovery of dapivirine, a nonnucleoside HIV-1 reverse transcriptase inhibitor, as a broad-spectrum antiviral against both influenza A and B viruses. Antiviral Research, 2017, 145, 103-113.	1.9	26
62	Structure–Property Relationship Studies of Influenza A Virus AM2-S31N Proton Channel Blockers. ACS Medicinal Chemistry Letters, 2018, 9, 1111-1116.	1.3	26
63	Activity-based high-throughput profiling of metalloprotease inhibitors using small molecule microarrays. Chemical Communications, 2006, , 717.	2.2	25
64	Exploring Ugi-Azide Four-Component Reaction Products for Broad-Spectrum Influenza Antivirals with a High Genetic Barrier to Drug Resistance. Scientific Reports, 2018, 8, 4653.	1.6	25
65	Focusing on the Influenza Virus Polymerase Complex: Recent Progress in Drug Discovery and Assay Development. Current Medicinal Chemistry, 2019, 26, 2243-2263.	1.2	25
66	Discovery of M2 channel blockers targeting the drug-resistant double mutants M2-S31N/L26I and M2-S31N/V27A from the influenza A viruses. European Journal of Pharmaceutical Sciences, 2020, 141, 105124.	1.9	24
67	2D IR spectroscopy reveals the role of water in the binding of channel-blocking drugs to the influenza M2 channel. Journal of Chemical Physics, 2014, 140, 235105.	1.2	23
68	Discovery of Influenza Polymerase PA–PB1 Interaction Inhibitors Using an <i>In Vitro</i> Split-Luciferase Complementation-Based Assay. ACS Chemical Biology, 2020, 15, 74-82.	1.6	23
69	X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance. Biochemistry, 2020, 59, 627-634.	1.2	23
70	Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR. Journal of Biological Chemistry, 2017, 292, 17876-17884.	1.6	22
71	Chemical Genomics Approach Leads to the Identification of Hesperadin, an Aurora B Kinase Inhibitor, as a Broad-Spectrum Influenza Antiviral. International Journal of Molecular Sciences, 2017, 18, 1929.	1.8	22
72	Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. Journal of Medicinal Chemistry, 2018, 61, 5187-5198.	2.9	22

#	Article	IF	CITATIONS
73	A Novel Capsid Binding Inhibitor Displays Potent Antiviral Activity against Enterovirus D68. ACS Infectious Diseases, 2019, 5, 1952-1962.	1.8	22
74	X-ray Crystal Structure of the Influenza A M2 Proton Channel S31N Mutant in Two Conformational States: An Open and Shut Case. Journal of the American Chemical Society, 2019, 141, 11481-11488.	6.6	22
75	Identification of NMS-873, an allosteric and specific p97 inhibitor, as a broad antiviral against both influenza A and B viruses. European Journal of Pharmaceutical Sciences, 2019, 133, 86-94.	1.9	22
76	Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus. Journal of Medicinal Chemistry, 2017, 60, 3727-3738.	2.9	20
77	Brilacidin, a COVIDâ€19 drug candidate, demonstrates broadâ€spectrum antiviral activity against human coronaviruses OC43, 229E, and NL63 through targeting both the virus and the host cell. Journal of Medical Virology, 2022, 94, 2188-2200.	2.5	20
78	Photoinduced Electron Transfer and Fluorophore Motion as a Probe of the Conformational Dynamics of Membrane Proteins: Application to the Influenza A M2 Proton Channel. Langmuir, 2011, 27, 3815-3821.	1.6	19
79	Detection of drugâ€induced conformational change of a transmembrane protein in lipid bilayers using siteâ€directed spin labeling. Protein Science, 2013, 22, 65-73.	3.1	19
80	Profiling the in vitro drug-resistance mechanism of influenza A viruses towards the AM2-S31N proton channel blockers. Antiviral Research, 2018, 153, 10-22.	1.9	19
81	Development of broad-spectrum enterovirus antivirals based on quinoline scaffold. Bioorganic Chemistry, 2020, 101, 103981.	2.0	19
82	M2 as a target to combat influenza drug resistance: what does the evidence say?. Future Virology, 2016, 11, 1-4.	0.9	18
83	Chemical Probes for Blocking of Influenza A M2 Wild-type and S31N Channels. ACS Chemical Biology, 2020, 15, 2331-2337.	1.6	18
84	Pharmacological Characterization of the Mechanism of Action of R523062, a Promising Antiviral for Enterovirus D68. ACS Infectious Diseases, 2020, 6, 2260-2270.	1.8	17
85	Investigation of the Drug Resistance Mechanism of M2-S31N Channel Blockers through Biomolecular Simulations and Viral Passage Experiments. ACS Pharmacology and Translational Science, 2020, 3, 666-675.	2.5	17
86	Discovery of Potent and Broad-Spectrum Pyrazolopyridine-Containing Antivirals against Enteroviruses D68, A71, and Coxsackievirus B3 by Targeting the Viral 2C Protein. Journal of Medicinal Chemistry, 2021, 64, 8755-8774.	2.9	17
87	Affinity of Rimantadine Enantiomers against Influenza A/M2 Protein Revisited. ACS Medicinal Chemistry Letters, 2017, 8, 145-150.	1.3	16
88	Unraveling the Binding, Proton Blockage, and Inhibition of Influenza M2 WT and S31N by Rimantadine Variants. ACS Medicinal Chemistry Letters, 2018, 9, 198-203.	1.3	16
89	The L46P Mutant Confers a Novel Allosteric Mechanism of Resistance Toward the Influenza A Virus M2 S31N Proton Channel Blockers. Molecular Pharmacology, 2019, 96, 148-157.	1.0	14
90	Drug-Repurposing Screening Identified Tropifexor as a SARS-CoV-2 Papain-like Protease Inhibitor. ACS Infectious Diseases, 2022, 8, 1022-1030.	1.8	13

#	Article	IF	CITATIONS
91	Small Molecule Microarrays: Applications Using Specially Tagged Chemical Libraries. QSAR and Combinatorial Science, 2006, 25, 1009-1019.	1.5	12
92	Solid-supported membrane technology for the investigation of the influenza A virus M2 channel activity. Pflugers Archiv European Journal of Physiology, 2010, 459, 593-605.	1.3	12
93	Functional studies reveal the similarities and differences between AM2 and BM2 proton channels from influenza viruses. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 272-280.	1.4	12
94	A modulator of the low-voltage-activated T-type calcium channel that reverses HIV glycoprotein 120-, paclitaxel-, and spinal nerve ligation-induced peripheral neuropathies. Pain, 2020, 161, 2551-2570.	2.0	12
95	Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Analytical Chemistry, 2021, 93, 16273-16281.	3.2	12
96	Photothermal card reader assay using the commercial colloidal gold test strip for the rapid quantitative detection of food hazards. Mikrochimica Acta, 2022, 189, 112.	2.5	12
97	Invalidation of dieckol and 1,2,3,4,6-pentagalloylglucose (PGG) as SARS-CoV-2 main protease inhibitors and the discovery of PGG as a papain-like protease inhibitor. Medicinal Chemistry Research, 2022, 31, 1147-1153.	1.1	12
98	Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with <i>in vivo</i> antiviral efficacy against both oseltamivir sensitive and -resistant influenza A viruses. Emerging Microbes and Infections, 2021, 10, 1832-1848.	3.0	10
99	Rimantadine Binds to and Inhibits the Influenza A M2 Proton Channel without Enantiomeric Specificity. Biochemistry, 2021, 60, 2471-2482.	1.2	10
100	Discovery of hydrazide-containing oseltamivir analogues as potent inhibitors of influenza A neuraminidase. European Journal of Medicinal Chemistry, 2021, 221, 113567.	2.6	6
101	An Assay Suitable for High Throughput Screening of Anti-Influenza Drugs. PLoS ONE, 2013, 8, e54070.	1.1	5
102	Symmetric dimeric adamantanes for exploring the structure of two viroporins: influenza virus M2 and hepatitis C virus p7. Drug Design, Development and Therapy, 2018, Volume 12, 1019-1031.	2.0	4
103	Cytopathic Effect Assay and Plaque Assay to Evaluate in vitro Activity of Antiviral Compounds Against Human Coronaviruses 229E, OC43, and NL63. Bio-protocol, 2022, 12, e4314.	0.2	4
104	Stereospecific Effects of Benzimidazolonepiperidine Compounds on T-Type Ca ²⁺ Channels and Pain. ACS Chemical Neuroscience, 2022, 13, 2035-2047.	1.7	4
105	AG1478 Elicits a Novel Anti-Influenza Function via an EGFR-Independent, GBF1-Dependent Pathway. International Journal of Molecular Sciences, 2022, 23, 5557.	1.8	1
106	Reversibility of Amantadine Inhibition in the M2 Proton Channel of Influenza A Virus. Biophysical Journal, 2009, 96, 668a.	0.2	0
107	Mapping Water Density to Design New Blockers Against a Viral Proton Channel. Biophysical Journal, 2012, 102, 682a.	0.2	0
108	Structure and Inhibition of the M2 Proton Channel from the Influenza a Virus. Biophysical Journal, 2014, 106, 549a.	0.2	0

#	Article	IF	CITATIONS
109	Meet Our Regional Editor:. Current Chemical Biology, 2016, 9, 71-72.	0.2	0
110	Computational and Experimental Studies of Lipid-Protein Interactions in Biomemrane Function. Biophysical Journal, 2016, 110, 257a.	0.2	0
111	Solid-State 2H NMR Investigations of Viral M2 Ion Channel Drugs. Biophysical Journal, 2018, 114, 268a.	0.2	Ο
112	Structural basis of adamantane resistance in the influenza A M2 proton channel. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e140-e140.	0.0	0
113	Editorial of Special Column on Antiviral Drug Discovery and Pharmacology. Acta Pharmaceutica Sinica B, 2022, 12, 1540-1541.	5.7	0